Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:11:59.993Z Has data issue: false hasContentIssue false

The Influence of Solid Solutions on Flow Behavior in -γ-TiAl

Published online by Cambridge University Press:  10 February 2011

C. Woodward
Affiliation:
Materials Research Division, UES Inc, Dayton, OH 45432
S. A. Kajihara
Affiliation:
Materials Research Division, UES Inc, Dayton, OH 45432
S. I. Rao
Affiliation:
Materials Research Division, UES Inc, Dayton, OH 45432
D. M. Dimiduk
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB OH 45433-6533
Get access

Abstract

Modifications of alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of solution strengthening, high temperature yield stress and creep must relate the effects of chemistry to the mechanisms that influence these material properties. In ordered alloys, additional information regarding the crystallographic site occupancy of ternary elements is required. In this study relaxed structures and energies for intrinsic and substitutional point defects are calculated using a first principles plane-wave-pseudopotential method. Calculated defect energies are used to predict the density and site preferences of solid-solutions (Si, Cr, Nb, Mo, Ta and W) in ³TiAl. Size and modulus misfit parameters are calculated and the interaction of these defects with a dissociated ordinary screw dislocation evaluated within anisotropic elasticity theory. The derived interaction strength is then related to solid-solution strengthening for these defect centers. Predicted solid-solution effects are in good agreement with experimental observations for the binary alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y.-W. and Dimiduk, D.M., in Structural Intermetallics 1997, ed. Nathal, M.V. et al., (TMS, Warrendale, USA, 1997) p. 531.Google Scholar
2. Woodward, C., Kajihara, S., and Yang, L.H., Phys. Rev. B 57, 13459 (1998).CrossRefGoogle Scholar
3. Woodward, C., Rao, S.I. and Dimiduk, D.M., JOM, Vol.50, No. 7, 37 (1998).Google Scholar
4. Mayer, J., Elsasser, C., and Fahnle, M., Phys. Stat. Sol., 191, 283 (1995).CrossRefGoogle Scholar
5. Mishin, Y. and Farkas, D., Phil. Mag. A,75, 169 (1997).CrossRefGoogle Scholar
6. Hagen, M. and Finnis, M., Phil. Mag. A 77, 447 (1998).CrossRefGoogle Scholar
7. Rossouw, C.J., Forwood, C.T., Gibson, M.A., and Miller, A.R, Phil. Mag. A 74, 77 (1996).CrossRefGoogle Scholar
8. Fleischer, R.L., Acta Met., 9, 996 (1961).CrossRefGoogle Scholar
9. Stroh, A.N., Phil. Mag., 3, 625 (1958).CrossRefGoogle Scholar
10. Dimiduk, D.M., Rao, S.I., Partharasarthy, T.A. and Woodward, C., in Ordered Intermetallics-Physical Metallurgy and Mechanical Behavior, ed. Liu, C.T. et al., (1992 Kluwer Academic Publishers, the Netherlands) 237.CrossRefGoogle Scholar
11. Fleischer, R.L., in Strengthening of Metals, ed. Peckner, D., (Reinhold, London 1964) 93.Google Scholar
12. Fu, C.L. and Yoo, M., in Alloy Phase Stability and Design, ed. G.M. Stocks et al., MRS Symp. Proc. 186, 265 (1991).Google Scholar
13. Mehl, M.J., Osburn, J.E., Papaconstatopoulos, D.A., and Klein, B.M., in Alloy Phase Stability and Design, ed. G.M. Stocks et al., MRS Symp. Proc. 186, 277 (1991).Google Scholar
14. He, Y.E., Schwarz, R.B., and Migliori, A., J. Mater. Res. 10, 1187 (1995).CrossRefGoogle Scholar
15. Tanaka, K., Ichitsubu, T., Inui, H., Yamaguchi, M., and Koiwa, M., Philos. Mag. Lett. 73, 71 (1996).CrossRefGoogle Scholar
16. Petukhov, B.V., Phys. Met. Metall. 56, 123 (1983).Google Scholar
17. Sato, A. and Meshii, M., Acta Met. 21, 753 (1973).CrossRefGoogle Scholar
18. Sriram, S., Vasudevan, V.K., and Dimiduk, D.M., in High Temperature Ordered Intermetallic Alloys VI, ed. J.A. Horton et al., MRS Symp. Proc. 364, 647 (1995).Google Scholar
19. Moruzzi, V.L. and Marcus, P.M., Phys. Rev. B 48, 7665 (1993).CrossRefGoogle Scholar