Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:47:41.316Z Has data issue: false hasContentIssue false

The Influence of Sb Doping on the Growth and Electronic Properties of GaAs(100) and AIGaAs(100)

Published online by Cambridge University Press:  26 February 2011

A. Bensaoula
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston Texas 77204-5507.
K.D. Jamison
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston Texas 77204-5507.
H.C. Chen
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston Texas 77204-5507.
Get access

Abstract

The effect of the group V isoelectronic dopant antimony (Sb) on the optimum growth temperature for GaAs and AIGaAs MBE grown films is examined with the aim of producing heterostructures at the lowest possible temperatures. RHEED intensity oscillations have been used to quantify the incorporation rate of Ga, Al, and As for different growth temperatures. The electrical properties of the layers are characterized using photoluminescence spectroscopy (PL), Hall mobility measurements, and deep level transient spectroscopy (DLTS). Results show that isoelectronic Sb doping of GaAs and AIGaAs permits the growth of these materials at temperatures up to 800C lower than optimum, with deep level trap densities, photoluminescence quality, and Hall mobilities at least comparable or better than those films grown at optimal temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naritsuka, S., Yamanaka, K., Mihara, M. and Ishii, M., Jap. J. Appl. Phys. 23, 112 (1984).CrossRefGoogle Scholar
2. Moissous, M., Singer, K.E., Nicholas, D., J. Crys. Growth. 81, 314 (1987).CrossRefGoogle Scholar
3. Ioannau, D.E., YJ. Huang, and AA. Iliadis, Appl. Phys. Lett. 52, 2258 (1988).Google Scholar
4. Lil, A.Z., Kim, H.K., Jeong, J.C., Wong, D., Schlesinger, T.E., and Milnes, A.G., J. Appl.Phys., 4, 3497 (1988).Google Scholar
5. Wood, C.E.C., Kerr, T.M., McLean, T.D., Westwood, D.I., Medland, J.D., Blight, S. and Davies, R., J. Appl. Phys. 60, 1300 (1986).CrossRefGoogle Scholar
6. Stolz, W., Naganuma, M. and Horikoshi, Y., Jpn. J. Appl. Phys. 27 (1988).Google Scholar
7. Lewis, B.F., Fernandez, R., Madhukar, A., and Gruethaner, F.J., J. Vac. Sci. Technol. B4, 560 (1986).CrossRefGoogle Scholar
8. SULA Technologies deep level transient spectroscopy system.Google Scholar
9. Biryulin, Yu.F., Ganina, N.V., and Chldyshev, V.V., Soy. Phy. Semicond. 15, 1076 (1981).Google Scholar