Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:32:24.200Z Has data issue: false hasContentIssue false

Influence of Precursor Design on the Growth of Nanomaterials

Published online by Cambridge University Press:  01 February 2011

Sanjay Mathur
Affiliation:
CVD Division, Leibniz Institute of New Materials, D-66041 Saarbruecken, Germany
Hao Shen
Affiliation:
CVD Division, Leibniz Institute of New Materials, D-66041 Saarbruecken, Germany
Eva Hemmer
Affiliation:
CVD Division, Leibniz Institute of New Materials, D-66041 Saarbruecken, Germany
Thomas Ruegamer
Affiliation:
CVD Division, Leibniz Institute of New Materials, D-66041 Saarbruecken, Germany
Christian Holzapfel
Affiliation:
Institute of Functional Materials, Saarland University, D-66041 Saarbruecken, Germany
Get access

Abstract

Chemical processing of inorganic materials demands an understanding of the precursor chemistry at the molecular level. Although chemical compounds imitating atomic composition or bonding features of solid phases are efficient templates for a controlled evolution of nano-matter, the intrinsic advantages of this approach, such as atomic level mixing of the constituents and phase-selective synthesis, rely on the chemistry involved in the transformation of molecules to materials. Therefore, a better understanding of principles underlying chemical processing is necessary to enable a rational synthesis of materials. We have deposited MgAl2O4 thin films by the chemical vapor deposition of two Mg-Al alkoxide precursors, [MgAl2(OPri)8] and [MgAl2(OBut)8], which reveal that precursor attributes such as vapor pressure and ligand elimination mechanisms influence the microstructure and material properties of the spinel films. Under similar growth conditions, [MgAl2(OPri)8] produces rough and poorly crystalline spinel films, whereas crystalline deposits and dense microstructure were obtained in the case of [MgAl2(OBut)8]. The films were characterized by XRD, SEM, TEM, XPS and nano-indentation studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mathur, S. and Shen, H. in Encyclopedia of Nanoscience and Nanotechnology, Ed. Nalwa, H., American Scientific Publisher 4, 131 (2004).Google Scholar
2. (a) Gillan, E. G. and Barron, A. R., Chem. Mater., 9, 3037 (1997).Google Scholar
(b) Boyle, T. J., Tyner, R. P., Alam, T. M., Scott, B. L., Ziller, Z. W. and Potter, B. G., J. Am. Chem. Soc., 121, 12104 (1999).Google Scholar
(c) Jungemann, H. and Jansen, M., Mater. Res. Innov., 2, 200 (1999).Google Scholar
(d) Malik, M. A., Revaprasdu, N. and O'Brien, P., Chem. Mater., 13, 913 (2001).Google Scholar
(e) Mathur, S. in Chemical Physics of Thin Film Deposition – Processes for Micro- and Nano- Technologies, Ed. Pauleau, Y., Kluwer Academic Publishers, 91 (2002).Google Scholar
3. Lange, F. F. in Chemical Processing of Advanced Materials, Eds. Hench, L. L. and West, J. K., John Wiley & Sons, 611 (1992).Google Scholar
4. (a) Mathur, S., Shen, H., Lecerf, N., Kjekshus, A., Fjellvag, H., and Goya, G. F., Adv. Mater., 14, 1405 (2002).Google Scholar
(b) Mathur, S., Shen, H., Rapalaviciute, R., Kareiva, A., and Donia, N., J. Mater. Chem., 14, 3259 (2004).Google Scholar
5. (a) Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides, Academic Press, London (1978).Google Scholar
(b) Meese-Marktscheffel, J. A., Fukuchi, R., Kido, M., Tachibana, G., Jensen, C. M., Gilje, J. W., Chem. Mater. 5, 755 (1993).Google Scholar
6. Mathur, S., Veith, M., Ruegamer, T., Hemmer, E., and Shen, H., Chem. Mater., 16, 1304 (2004).Google Scholar
7. Tabor, D, The Hardness of Metals, Oxford Clarend on Press (1951).Google Scholar
8. (a) Somekawa, H., Nieh, T.G. and Higashi, K., Scripta Mater., 50, 1361 (2004).Google Scholar
(b) Petch, J., Iron, J., Steel Inst., 174, 25 (1953).Google Scholar
(c) Hall, E. O., Proc. Phys. Soc. London B, 64, 747 (1951).Google Scholar