Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:50:46.388Z Has data issue: false hasContentIssue false

Influence of oxygen impurity on containerless solidification of quasicrystalline-forming Zr80Pt20 alloy

Published online by Cambridge University Press:  21 March 2013

Takeshi Harada
Affiliation:
Gakushuin university, 1-5-1 Mejiro, Toshima, Tokyo, Japan
Akitoshi Mizuno
Affiliation:
Gakushuin university, 1-5-1 Mejiro, Toshima, Tokyo, Japan
Masahito Watanabe
Affiliation:
Gakushuin university, 1-5-1 Mejiro, Toshima, Tokyo, Japan
Get access

Abstract

The influence of oxygen content on containerless solidification of Zr80Pt20 alloy has been studied by using conical nozzle levitation (CNL) technique. The doping level of oxygen from 41 to 5450 ppm mass oxygen (PMO) affects the undercooling of the liquid Zr80Pt20 alloy. Time-resolved synchrotron x-ray diffraction revealed that the quasicrystalline (QC) phase precipitated as a primary phase during solidification of the Zr80Pt20 alloy. The amount of the QC phase depends on the oxygen content in the alloy. This indicates that the doping level of oxygen in Zr80Pt20 alloy can be related to the metastable phase formation as well as the glass-formation ability.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Inoue, A. and Takeuchi, A., Mater. Trans. 43 1892(2002).CrossRefGoogle Scholar
Wang, D., Li, Y., Sun, B. B., Sui, M. L., Lu, K. and Ma, E.: Appl. Phys. Lett.84 (2004) 4029.CrossRefGoogle Scholar
Xia, L., Ding, D., Shan, S. T. and Dong, Y D: J. Phys.. Condens. Matter. 18 (2006) 3543.CrossRefGoogle Scholar
Wang, Y. X., Yang, H., Lim, G., and Li, Y., Scr.Mater. 62, 682685 (2010).CrossRefGoogle Scholar
Liu, Z., Li, R., Wang, H., and Zhang, T., J. Alloys and Compounds 509, 50335037 (2011).CrossRefGoogle Scholar
Sordelet, D. J., Yang, X.Y., Rozhkova, E. a., Besser, M.F., and Kramer, M.J., Appl. Phys. Lett. 83, 69 (2003).CrossRefGoogle Scholar
Li, H. X., Gao, J. E., Jiao, Z. B., Wu, Y., and Lu, Z. P., Appl. Phys. Lett. 95, 161905 (2009).CrossRefGoogle Scholar
Saida, J., Matsushita, M., and Inoue, A., J. Appl. Phys. 90, 4717 (2001).CrossRefGoogle Scholar
Price, D. L.: High-temperature Levitated Materials, (Cambridge Univ. Press, (2010)).CrossRefGoogle Scholar
Jacobs, G. and Egry, I., Phys. Rev. B 59, 39613968 (1999).CrossRefGoogle Scholar
Krishnan, S. and Price, D. L.: J. Phys.: Condens. Matter 12 (2000) R145R176.Google Scholar
Kelton, K. F., Lee, G. W., Gangopadhyay, A. K., Hyers, R. W., Rathz, T. J., Rogers, J. R., Robinson, M. B. and Robinson, D. S.: Phys. Rev. Lett. 90 (2003) 195504–1–4.CrossRefGoogle Scholar
Nagashio, K., Adachi, M., Higuchi, K., Mizuno, A., Watanabe, M., Kuribayashi, K., and Katayama, Y., J. Appl. Phys. 100, 033524 (2006).CrossRefGoogle Scholar
Watanabe, M., Mizuno, A., Akimoto, T., and Kohara, S., Mater. Sci. Forum 638642, 16771682 (2010).CrossRefGoogle Scholar
Qu, D.D., Mizuno, A., Watanabe, M., Bednarcik, J., and Shen, J., Mater. Sci. Eng: A 555, 3643 (2012).CrossRefGoogle Scholar
Mizuno, A., Tamura, J., Kohara, S., and Watanabe, M., ISIJ International 52, 770773 (2012).CrossRefGoogle Scholar
Kohara, S., Itou, M., Suzuya, K., Inamura, Y., Sakurai, Y., Y.Ohishi, and Takata, M.: J.Physi. Condens. Mattt.,19 (2007), 506101 CrossRefGoogle Scholar