Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T05:49:05.822Z Has data issue: false hasContentIssue false

Influence of Ni Addition on Mechanical Properties and Fracture Behaviors of Ir-15Nb Two-Phase Refractory Superalloys

Published online by Cambridge University Press:  10 February 2011

Yuefeng Gu
Affiliation:
(On leave from Shanghai Jiao Tong University, Shanghai 200030, P. R. China)
Y. Yamabe-Mitarai
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibarake 305–0047, Japan
Y. Ro
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibarake 305–0047, Japan
T. Yokokawa
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibarake 305–0047, Japan
H. Harada
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibarake 305–0047, Japan
Get access

Abstract

Ir-based alloys with fcc-L12 two-phase coherent structure, which are called “refractory superalloys”, have good potentiality as structure materials used at ultra-high temperatures up to 2000 °C. Preliminary results showed that the refractory superalloys failed predominately by brittle intergranular fracture at room temperature even though they showed higher strength at that temperature. This paper will present the influence of nickel (Ni) addition on mechanical properties and fracture behaviors of one of these alloys, Ir-15at%Nb. The results indicated that Ni addition was beneficial to the compression ductility and strength of two-phase Ir-15at%Nb alloy when Ni content was below the optimum content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamabe, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H.: Scripta Mat., 1996, vol. 35, pp. 211215.CrossRefGoogle Scholar
2. Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H.: Scripta Mat., 1997, vol.36, pp. 393398.Google Scholar
3. Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H.: Mat. Res. Soc. Symp. Proc., 1997, vol.460, pp. 701706.CrossRefGoogle Scholar
4. Yamabe-Mitarai, Y., Ro, Y., Maruko, T., Yokokawa, T., and Harada, H.: Structural Intermetallics, 1997, pp. 805814.Google Scholar
5. Yamabe-Mitarai, Y., Ro, Y., Maruko, T., and Harada, H.: Met. Trans., 1998, vol.29, pp. 537549.Google Scholar
6. Massalski, Thaddeus B.: Binary Alloy Phase Diagrams, 2nd ed., ASM Metals Park, OH, 1992, vol. 3.Google Scholar
7. Fleischer, R. L.: Acta Metal., 1963, vol.11, pp. 203209 Google Scholar
8. Labusch, R.: Acta Met., 1972, vol.20, pp. 917927 Google Scholar
9. Huber, K. P., and Herzberg, G. L.: Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules, van Nostrand, New York, NY, 1979.CrossRefGoogle Scholar
10. Reid, C. N. and Routbort, J. L.: Met. Trans., 1972, vol.3, pp. 2257–60.CrossRefGoogle Scholar
11. Darling, A. S.: Intern. Met. Rev., 1973, vol.18, pp. 91122.CrossRefGoogle Scholar
12. Chen, S. P.: Phil. Mag. A, 1992, vol.66, pp. 110.CrossRefGoogle Scholar