Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:25:39.843Z Has data issue: false hasContentIssue false

Influence of Lysozyme on the Biomimetic Growth of Silica Tubes in Porous Membranes

Published online by Cambridge University Press:  01 February 2011

Clémentine Gautier
Affiliation:
[email protected], Chimie de la Matiere Condensee, CNRS-UPMC, 4 place Jussieu, Paris, 75252, France
Rémi Courson
Affiliation:
[email protected], Chimie de la Matiere Condensee, CNRS-UPMC, 4 place Jussieu, Paris, 75252, France
Pascal Jean Lopez
Affiliation:
[email protected], Molecular Biology of Photosynthetic Organisms, CNRS-ENS, 46 rue d'Ulm, Paris, 75005, France
Jacques Livage
Affiliation:
[email protected], Chimie de la Matiere Condensee, CNRS-UPMC, 4 place Jussieu, Paris, 75252, France
Thibaud Coradin
Affiliation:
[email protected], Chimie de la Matiere Condensee, CNRS-UPMC, 4 place Jussieu, Paris, 75252, France
Get access

Abstract

Pore channels of poly-carbonate membranes were recently used as biomimetic models to study the effect of confinement on silicate condensation, leading to the formation of silica tubes exhibiting a core-shell structure. In this work, we pre-immobilized lysozyme on the membrane pores, inducing the modification of the tube shell formation process, and variation in core particle size. These data strengthen previous assumptions on the role of interfacial interactions on the growth of the tube shell and indicate that such interactions also influence the core particle formation. Such approach therefore seems suitable to mimic the formation of silica/protein multilayers as found in several biomineralizing organisms

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowenstam, H.A., Weiner, S., On Biomineralization, Oxford University Press, New York, 1989.Google Scholar
2. Mann, S., Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, New York, 2001 Google Scholar
3. Silicon and Siliceous Structures in Biological Systems, Simpson, T.L., Volcani, B.E. (Eds.), Springer-Verlag, New York, 1981 Google Scholar
4. Sumper, M., Kröger, N., J. Mater. Chem. 14, 2059 (2004).Google Scholar
5. Patwardhan, S. V., Clarson, S. J., Perry, C. C., Chem. Commun. 1113 (2005).Google Scholar
6. Lopez, P. J., Gautier, C., Livage, J., Coradin, T., Current Nanosci. 1, 73 (2005).Google Scholar
7. Wu, Y., Cheng, G., Katsov, K., Sides, S. W., Wang, J., Tang, J., Frederickson, G. H., Moskovits, M., Stucky, G. D., Nature Mater. 3, 816 (2004).Google Scholar
8. Rassy, H. El, Belamie, E., Livage, J., Coradin, T., Langmuir 21, 8584 (2005).Google Scholar
9. Bauer, C. A., Robinson, D. B., Simmons, B. A., Small 3, 58 (2007).Google Scholar
10. Gautier, C., Lopez, P. J., Hemadi, M., Livage, J., Coradin, T., Langmuir 22, 9092 (2006).Google Scholar
11. Gautier, C., Lopez, P. J., Livage, J., Coradin, T., J. Colloid Interf. Sci. 309, 44 (2007)Google Scholar
12. Coradin, T., Coupé, A., Livage, J., Colloids Surf. B 29,189 (2003).Google Scholar
13. Wertz, C. F., Santore, M. M., Langmuir 18, 1190 (2002).Google Scholar
14. Benesch, T., Yiacoumi, S., Tsouris, C., Phys. Rev. E 68, 021401 (2003).Google Scholar