Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T02:39:30.294Z Has data issue: false hasContentIssue false

Influence of Li Addition on the Sintering and Dielectric Properties of PNN-PMW-PT Relaxor Ferroelectrics

Published online by Cambridge University Press:  15 February 2011

Raghu Natarajan
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802.
Joseph P. Dougherty
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802.
Get access

Abstract

Compositions in the PNN-PMW-PT system can be tailored to give high dielectric constant for MLC applications. Low temperature firing of MLC is always advantageous in using the less expensive electrode systems. Controlled addition of LiNO3 reduces the sintering temperature, increases the fired density and influences the microstructure of the ceramics. It also raises the peak dielectric constant and shifts the Curie temperature. The possible role of Li+ in modifying the characteristics of the ceramics is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shrout, T.R. and Dougherty, J.P., Ceramic Transactions, Edited by Long, H.C. and Yan, M.F., 8, pp. 319 (1990).Google Scholar
2. Li, L., in First Pacific Rim International Conference on Advanced Materials and Processing (PRICH), p. 899 (1993).Google Scholar
3. Zhilun, G., Liu, Y. and Sun, H., Proceedings, Second International Conference on Properties and Applications of Dielectric Materials, IEEE, 1, p. 125 (1988).Google Scholar
4. Yonezawa, M., Ceramic Bulletin, 62, p. 1375 (1983).Google Scholar
5. Stein, S. J., Wahlers, R.L., Bless, P.W., Dychala, D. H. and Huang, C. Y. D., Proceedings of the 8th International Microelectronic Conference, p. 291 (1994).Google Scholar
6. Fujioka, Y., Fujisaki, T., Sakaguchi, I., Yamakuchi, Y., Shimo, S., Onitsuka, K. and Fujikawa, N., Proceedings of the seventh International Microelectronic Conference, p. 355 (1992).Google Scholar
7. Drozdyk, L., Proceedings of the International Symposium on Hybrid Microelectronics, p. 209 (1993).Google Scholar
8. Megherhi, M., Dougherty, J.P., Dayton, G.O., and Newnham, R.E., 7th International Symposium on Application of Ferroelectricity, p. 31 (1990).Google Scholar
9. Adair, J.H., Anderson, D.A., Dayton, G.O., and Shrout, T.R., Journal of Materials Education, 9, p.71 (1987).Google Scholar
10. Shimida, Y., Utsumi, K., Ikeda, T., and Nagarako, S., Proceedings of International Microelectronics Conference, Tokyo, Japan, p. 227 (1984).Google Scholar
11. Vorotilov, K.A., Microelectronic Engineering, 29, p.41 (1995).Google Scholar
12. Utsumi, K., Ceramic Bulletin, 70, p. 1050 (1991).Google Scholar
13. Herbert, J.M., Ceramic dielectrics and capacitors. Electrocomponent Science Monographs, 6, Gordon and Breach, New York, (1985).Google Scholar
14. Choudhary, K.R. and Subbarao, E.C., Ferroelectrics, 37, p. 689 (1981).Google Scholar
15. Jang, S.J., Schulze, W.A., and Biggers, J.V., Am. Ceram. Soc. Bull., 62, p. 216 (1983).Google Scholar
16. Megherhi, M.H., “The Effect of Additives, Microstructure, and Macrostructure on the Fracture Behaviour of Lead Magnesium Niobate-based Ceramic Actuators,” M.S. Thesis, The Pennsylvania State University (1988).Google Scholar
17. Guha, J.P., Houg, D.J. and Anderson, H.V., J. Am. Cer. Soc., 71, C152 (1988).Google Scholar
18. Srikanth, V. and Subbarao, E.C., Journal of Mat. Research, 6, p. 1308 (1991).Google Scholar
19. Amin, R.B., Anderson, H.V. and Hodgekins, C.E., U.S. Patent # 4,082,906 (1978).Google Scholar
20. Haussonne, J.M., Desgardin, G., Bajolet, P., and Raveau, B., J. of Am. Cer. Soc., 66, p. 801 (1983).Google Scholar
21. Haussonne, J.M., Regreng, O., Lostec, J., Desgardin, G., Halmi, M., and Raveau, B., Mat. Sci. Monograph, 38B, p. 1515 (1987).Google Scholar
22. Laurent, M.J., Desgardin, G., Raveau, B., Haussonne, J.M., and Lostec, J., J. Mater. Sci., 23, 4481 (1988).Google Scholar
23. Desgardin, G., Bali, H., and Raveau, B., Mater. Chem. & Phys., 8, p. 469 (1983).Google Scholar
24. Fu, S.L., and Chen, G.F., The International Journal for Hybrid Microelectronics, 10, p. 1 (1987).Google Scholar
25. Halmi, M., Desgardin, G. and Raveau, B., Advanced Ceramic Materials, 3, p. 32 (1988).Google Scholar
26. Megherhi, M., “Interaction Studies of Lead Magnesium Niobate-based Capacitor Materials with Integrated Ceramic Packaging,” Ph.D. Thesis, The Pennsylvania State University (1991).Google Scholar
27. Ochi, A., Mori, T., Furuya, M., Proceedings of the Eighth International Symposium on Applications of Ferroelectrics, IEEE, p. 66 (1992).Google Scholar
28. Yonezawa, M., Utsumi, K., Ochi, A., and Mori, T., Proceedings of the 7th International Symposium on Application of Ferroelectrics, IEEE, p. 159 (1990).Google Scholar
29. Jaffe, B., Cook, W.R. Jr, and Jaffe, H., “Piezoelectric Ceramics,” Academic Press, New York, p. 59 (1971).Google Scholar