Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:54:43.159Z Has data issue: false hasContentIssue false

Influence of Halides on the Luminescence of Oxide/Anthracene/Polymer Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Dorothée V. Szabó
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, D-76021 Karlsruhe
Heike Reuter
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, D-76021 Karlsruhe
Sabine Schlabach
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, D-76021 Karlsruhe
Christoph Lellig
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, D-76021 Karlsruhe
Dieter Vollath
Affiliation:
NanoConsulting, D-76297 Stutensee
Get access

Abstract

Nanocomposites made of an oxide core of a wide band gap insulator, a lumophore monolayer of anthracene and an outer protecting layer of PMMA are studied regarding their luminescence properties and the influence of halides stemming either from the precursor used for synthesis or from the lumophore itself. Halide-free nanocomposites exhibit luminescence spectra resembling to that of anthracene with some significant differences concerning the intensity ratio and an additional peak at 420 nm. Nanocomposites made from chlorides show excimer-like spectra with broad maxima. In microanalysis residual chlorine can be detected. Chlorine-free oxide kernels, coated with 9, 10 dichloroanthracene exhibit luminescence spectra resembling to a superposition of the pure lumophores 9 chloro- and 9, 10 dichloroanthracene. It can be shown that the origin of the halide strongly influences, but does not quench the luminescence spectra of the powders. Suspensions of the chlorine containing nanocomposites in ethanol exhibit modified anthracene like spectra. This is a strong indication for dechlorination by proton-transfer in ethanol. Suspensions of the same material in water lead to spectra showing a superposition of exci-mer spectrum and modified anthracene spectrum. Here a partial dechlorination occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vollath, D., Lamparth, I., Szabó, D.V., in “Nanophase and Nanostructured Materials IV” edited by Komarneni, S., Parker, J.C., Vaia, R.A., Lu, G.Q., Matsushita, J.-I., (Mater. Res. Soc. Proc. 703, Pittsburgh, PA, 2002) V7.8.1–V7.8.6.Google Scholar
2. Vollath, D., Szabó, D.V., Schlabach, S., J. Nanoparticle Res. 6, 181191 (2004).Google Scholar
3. Dong, W., Zhu, C., J. Phys. Chem. Solids 64, 265271 (2003).Google Scholar
4. Musikhin, S., Bakueva, L., Sargabt, E.H., Shik, A., J. Appl. Phys. 91, 66796683 (2002).Google Scholar
5. Förster, T., in “Fluoreszenz organischer Verbindungen”, Vandenheock & Ruprecht, Göttingen (Germany), p. 97100 (1951).Google Scholar
6. Vollath, D., Lamparth, I., Szabó, D.V., Berg und Hüttenmännische Monatshefte (BHM ), 147, 350358 (2002).Google Scholar
7. Vollath, D., Lamparth, I., Wacker, F., German Patent Application DE 10203907.0 (2002).Google Scholar
8. Vollath, D., Szabó, D. V., in “Innovative Processing of Films and Nanocrystalline Powders” edited by Choy, K.-L., Imperials College Press, p. 210251 (2002).Google Scholar
9. Lakowicz, J.R., in “Principles of Fluorescence Spectroscopy”, Kluewer Academic / Plenum Publishers, New York, p. 238 (1999).Google Scholar
10. Worrall, D.R., Williams, S.L., Eremenko, A., Smirnova, N., Yakimenko, O., Starukh, G., Colloids and Surfaces A 230, 4555 (2004).Google Scholar
11. Kim, C.S., Oh, S. M., Kim, S., Cho, C.G., Macromol. Rapid Commun. 19, 191196 (1998).Google Scholar
12. Li, Q., Ai, D., Dai, X., Wang, J., Powder Technology 137, 3440 (2003).Google Scholar
13. Hamanoue, K., Nakayama, T., Ikenaga, K., Ibuki, K., J. Phys. Chem. 96, 1029710302 (1992).Google Scholar