No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Nanocomposites made of an oxide core of a wide band gap insulator, a lumophore monolayer of anthracene and an outer protecting layer of PMMA are studied regarding their luminescence properties and the influence of halides stemming either from the precursor used for synthesis or from the lumophore itself. Halide-free nanocomposites exhibit luminescence spectra resembling to that of anthracene with some significant differences concerning the intensity ratio and an additional peak at 420 nm. Nanocomposites made from chlorides show excimer-like spectra with broad maxima. In microanalysis residual chlorine can be detected. Chlorine-free oxide kernels, coated with 9, 10 dichloroanthracene exhibit luminescence spectra resembling to a superposition of the pure lumophores 9 chloro- and 9, 10 dichloroanthracene. It can be shown that the origin of the halide strongly influences, but does not quench the luminescence spectra of the powders. Suspensions of the chlorine containing nanocomposites in ethanol exhibit modified anthracene like spectra. This is a strong indication for dechlorination by proton-transfer in ethanol. Suspensions of the same material in water lead to spectra showing a superposition of exci-mer spectrum and modified anthracene spectrum. Here a partial dechlorination occurs.