Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-19T15:50:50.187Z Has data issue: false hasContentIssue false

Influence of Film/Substrate Interface Structure on Plasticity in Metal Thin Films

Published online by Cambridge University Press:  18 March 2011

G. Dehm
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
B.J. Inkson
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, U.K.
T.J. Balk
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
T. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
Get access

Abstract

In-situ transmission electron microscopy studies of metal thin films on substrates indicate that dislocation motion is influenced by the structure of the film/substrate interface. For Cu films grown on silicon substrates coated with an amorphous SiNx diffusion barrier, the transmission electron microscopy studies reveal that dislocations are pulled towards the interface, where their contrast finally disappears. However, in epitaxial Al films deposited on single-crystalline α- Al2O3 substrates, threading dislocations advance through the layer and deposit dislocation segments adjacent to the interface. In this latter case, the interface is between two crystalline lattices. Stresses in epitaxial Al films and polycrystalline Cu films were determined by substrate- curvature measurements. It was found that, unlike the polycrystalline Cu films, the flow stresses in the epitaxial Al films are in agreement with a dislocation-based model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nix, W.D., Metall. Trans. A 20, 2217 (1989).Google Scholar
2. Nix, W.D., Scripta Mater. 39, 545 (1998).Google Scholar
3. Kuan, T.S. and Murakami, M., Metall. Trans. A 13, 383 (1982).Google Scholar
4. Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A., and Fraser, D.B., J. Electr. Mater. 19, 1231 (1990).Google Scholar
5. Jawarani, D., Kawasaki, H., Yeo, I-S., Rabenberg, L., Stark, J.P., and Ho, P.S., J. Appl. Phys. 82, 171 (1997).Google Scholar
6. Mader, S. and Chaudhari, P., J. Vac. Sci. Technol. 6, 615 (1969).Google Scholar
7. Müllner, P. and Arzt, E. in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M., Busso, E.P., Oliver, W.C. (Mater. Res. Soc. Proc. 505, Pittsburgh, PA, 1998) p. 149.Google Scholar
8. Kobrinsky, M.J. and Thompson, C.V., Acta Mat. 48, 625 (2000).Google Scholar
9. Keller, R-M., Sigle, W., Baker, S.P., Kraft, O., and E. Arzt in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., Baker, S.P. (Mater. Res. Soc. Proc. 435, Pittsburgh, PA, 1997) p. 221.Google Scholar
10. Legros, M., Dehm, G., R-M. Keller-Flaig, Arzt, E., Hemker, K.J., and Suresh, S., Materials Science and Eng. A (2001) in press.Google Scholar
11. Dehm, G. and Arzt, E., Applied Physics Letters 77, 1126 (2000).Google Scholar
12. Dehm, G., Weiss, D. and Arzt, E., Materials Science and Eng. A (2001) in press.Google Scholar
13. Inkson, B., Dehm, G. and Wagner, T. in Physical Sciences II, edited by Gemperlova, J., Vavra, I. (Proceedings of the 12th European Congress on Electron Microscopy, Brno, Czech Republic, 2000) p. 539.Google Scholar
14. Inkson, B., Spolenak, R. and Wagner, T., EMAG Inst. Phys. Conf. Ser. 161, 335 (1999).Google Scholar
15. Keller, R-M., Baker, S.P. and Arzt, E., J. Mater. Res. 13, 1307 (1998).Google Scholar
16. Stoney, G.G., Proc. R. Soc. A 82, 172 (1909).Google Scholar
17. Dehm, G., Ernst, F., Mayer, J., Möbus, G., Müllejans, H., Phillipp, F., Scheu, C., Rühle, M., Z. Metallkunde 87, 898 (1996).Google Scholar
18. Strecker, A., Salzberger, U., Mayer, J., Prakt. Metallogr. 30, 482 (1993).Google Scholar
19. Marien, J., Plitzko, J.M., Spolenak, R., Keller, R-M., and Mayer, J., J. of Micros. 194, 71 (1999).Google Scholar
20. Roos, B. and Ernst, F., J. Cryst. Growth 137, 457 (1994).Google Scholar
21. Ernst, F., Raj, R., and Rühle, M., Z. Metallkunde 12, 961 (1999).Google Scholar
22. Mader, W., Z. Metallkunde 80, 139 (1989).Google Scholar
23. Gutkin, M. Yu., Militzer, M., Romanov, A. E., and Vladimirov, V. I., Phys. Stat. Sol. (a) 113, 337 (1989).Google Scholar
24. Vellinga, W.P., Hosson, J.T.M. De, and Vitek, V., Acta Mater. 45, 1525 (1997).Google Scholar
25. Romanov, A. E., Wagner, T., and Rühle, M., Scripta Materialia 38, 869 (1998).Google Scholar
26. Arzt, E., Dehm, G., Gumbsch, P., Kraft, O., and Weiss, D., Progress in Materials Science 46, 283 (2001).Google Scholar
27. Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., in this volume (2001).Google Scholar