Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T01:43:07.079Z Has data issue: false hasContentIssue false

Influence of Crystal Phase and Orientation on Electro-Optic Effect of PLZT Epitaxial Films

Published online by Cambridge University Press:  26 February 2011

Keisuke Sato
Affiliation:
[email protected], FUJITSU LABORATORIES LTD., Advanced Materials Laboratory, 10-1, Morinosato-Wakamiya,, Atsugi, N/A, 243-0197, Japan, +81-462-50-8362, +81-462-48-8812
Masatoshi Ishii
Affiliation:
[email protected], FUJITSU LABORATORIES LTD., Advanced Materials Laboratory, Japan
Masao Kondo
Affiliation:
[email protected], FUJITSU LABORATORIES LTD., Advanced Materials Laboratory, Japan
Kazuaki Kurihara
Affiliation:
[email protected], FUJITSU LABORATORIES LTD., Advanced Materials Laboratory, Japan
Get access

Abstract

Lanthanum-modified lead zirconate titanate and lead zirconate titanate epitaxial films with (100) and (111) orientations are grown respectively on (100) and (111) niobium, lending conductivity to strontium titanate through chemical solution deposition. This study investigates changes in the ordinary and extraordinary refractive index no and ne induced by the electric field in these films using the prism-coupling method. Anisotropic electrooptic effects arise from Pockels effect and switching among polar clusters. Isotropic electrooptic effect is realized on PLZT 8/65/35 and PZT 70/30 of (100) epitaxial films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haertling, G. H. and Land, C. E., J. Am. Ceram. Soc. 54, 1 (1971).Google Scholar
2 Haertling, G. H., Ferroelectrics 75, 25 (1987).Google Scholar
3 Taniguchi, Y., Murakami, K., Kobayashi, H., and Tanaka, S., Jpn. J. Appl. Phys. Part 1 36, 2709 (1997).Google Scholar
4 Jin, G. H., Zou, Y. K., Fuflyigin, V., Liu, S. W., Lu, Y. L., Zhao, J., and Cronin-Golomb, M., J. Light. Tech. 18, 807 (2000).Google Scholar
5 Nashimoto, K., Nakamura, S., Morikawa, T., Moriyama, H., Watanabe, M., and Osakabe, E., Jpn. J. Appl. Phys. 38, 5641 (1999).Google Scholar
6 Burns, B. and Dacol, F. H., Phys. Rev. B 28, 2527 (1983).Google Scholar
7 Viehland, D., Xu, Z., and Payne, D. A., J. Appl. Phys. 74, 1993 (1993).Google Scholar
8 Kirkby, C. J., Ferroelectrics 37, 567 (1981).Google Scholar
9 Land, C. E., J. Am. Ceram. Soc. 72, 2059 (1989).Google Scholar
10 Preston, K. D. and Haertling, G. H., Appl. Phys. Leters 60, 2381 (1992).Google Scholar
11 , B. G. P. Jr., Sinclair, M. B., Dimos, D., Tuttle, B. A., and Schwartz, R. W., J. Non-Cryst. Sol. 178, 69 (1994).Google Scholar
12 Ishii, M., Sato, K., Kondo, M., and Kurihara, K., UFFC 2004 Joint Conference (in press) (2004).Google Scholar
13 Sato, K., Ishii, M., Kurihara, K. and Kondo, M., Appl. Phys. Leters (in press)Google Scholar
14 Tien, P. K., Ulrich, R., and Martin, R. J., Appl. Phys. Leters 14, 291 (1969).Google Scholar