Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:02:30.145Z Has data issue: false hasContentIssue false

INFLUENCE OF CONFINEMENT ON POLYMER-ELECTROLYTE RELAXATIONAL DYNAMICS

Published online by Cambridge University Press:  01 February 2011

J.-M. Zanotti
Affiliation:
Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, 91191 Gif/Yvette cedex, France Intense Pulsed Neutron Source, Argonne Nat. Lab., Argonne, IL 60439, USA
L.J. Smith
Affiliation:
Clark University, 950 Main Street Worcester, MA 01610, USA
D.L. Price
Affiliation:
Intense Pulsed Neutron Source, Argonne Nat. Lab., Argonne, IL 60439, USA CRMHT (CNRS), Avenue de la Recherche Scientifique, 45071 Orléans, France
M.-L. Saboungi
Affiliation:
CRMD(CNRS), Avenue de la Recherche Scientifique, 45071 Orléans, France
Get access

Abstract

Conception and industrial production of viable high specific energy/power batteries is a central issue for the development of non-polluting vehicles. In terms of stored energy and safety, solid-state devices using polymer electrolytes are highly desirable. One of the most studied systems is PEO (polyethylene oxide) complexed by Li salts. Polymer segmental motions and ionic conductivity are closely related. Bulk PEO is actually a biphasic system where an amorphous and a crystalline state (Tg ≈ 213 K, Tm ≈ 335 K) coexist. To improve ionic conduction in those systems requires a significant increase of the amorphous phase fraction where lithium conduction is known to mainly take place. Confinement strongly affects properties of condensed matter and in particular the collective phenomena inducing crystallization. Confinement of the polymer matrix is therefore a possible alternative route to the impractical use of high temperature.

Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N] (or (POE)8LiTFSI) dynamics are presented. The nano-confining media is Vycor, a silica based hydrophilic porous glass (characteristic size of the 3D pore network ≈ 50 Å). As expected, the presence of Li salt slows down the bulk polymer dynamics. The confinement also affects dramatically the apparent mean-square displacement of the polymer. Local relaxational PEO dynamics is described KWW model. We also present an alternate model and show how the detailed polymer dynamics (correlation times and local geometry of the motions) can be described without the use of such stretched exponentials so as to access a rheology-related meaningful physical quantity: the monomeric friction coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larminie, J. and Dicks, A., Fuel Cell Systems explained, Wiley, 2000.Google Scholar
2. International Workshop on dynamics in confinement, edited by Frick, B., Zorn, R. and Buttner, H., Journal de Physique, 10, PR7 (2000).Google Scholar
3. Vycor Brand Porous Glass #7930. Corning Glass works.Google Scholar
4. Levitz, , Ehret, G., Sinha, S. K. and Drake, J. M., J. Chem. Phys., 95, 6151 (1991).Google Scholar
5. Lal, J., Sinha, S.K. and Auvray, L., J. Phys. II France 7, 1597 (1997).Google Scholar
6. Daoud, M. and de Gennes, P.-G. J. de Physique, 38, 8593 (1977).Google Scholar
7. Stapf, S. and Kimmich, R., Macromolecule 29, 1638 (1996).Google Scholar
8. Smith, G.D., Yoon, D.Y., Jaffe, R.L., Colby, R.H., Krishnamoorti, R. and Fetters, L.J., Macromolecules 29, 3462 (1996).Google Scholar
9. Zanotti, J.-M., Smith, L.J., Giannelis, E., Levitz, P., Price, D.L., and Saboungi, M.-L., Solid-State Ionics, MRS Proceedings Volume 756 (2002)Google Scholar
10. Connatser, R. W. Jr, Belch, H., Jirik, L., Leach, D. J., Trouw, F. R., Zanotti, J.-M., Ren, Y., Crawford, R. K., Carpenter, J. M., Price, D. L., Loong, C.-K., Hodges, J. P., and Herwig, K. W., ICANS-XVI, 16th Meeting of the International Collaboration on Advanced Neutron Sources, May 12–15, 2003, Düsseldorf-Neuss, Germany Google Scholar
11. Richter, D., Physica B, 276–278, 22 (2000)Google Scholar
12. Rouse, P. E., J. Chem. Phys., 21, 1272 (1953).Google Scholar
13. Schmidt-Rohr, K. and Spiess, H. W., Multidimensional solid-state NMR and polymers (Academic Press, New-York, 1994).Google Scholar
14. van Kampen, N. G.. Stochatic process in Physics and Chemistry. North Holland, Amsterdam.Google Scholar
15. Bée, M., Quasielastic Neutron Scattering: principles and applications in solid-state chemistry, biology and material science. Adam & Hilger, Bristol & Philadelphia (1988).Google Scholar
16. Hall, C. K. and Helfand, E., J. Chem. Phys., 77, 3275 (1982).Google Scholar
17. Batie, R. Dejean de la, Laupretre, F. and Monnerie, L., Macromolecules, 21, 2045 (1988).Google Scholar
18. Moe, N. E., Qiu, X.H. and Ediger, M. D., Macromolecules, 33, 21452152 (2000).Google Scholar
19. Triolo, A. et al., Physica B 301, 163 (2001).Google Scholar