Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T19:41:14.559Z Has data issue: false hasContentIssue false

Influence of Chemical-Mechanical Polishing Process on Time Dependent Dielectric Breakdown Reliability of Cu/Low-k Integration

Published online by Cambridge University Press:  31 January 2011

Yohei Yamada
Affiliation:
[email protected], Hitachi, Ltd., Micro Device Division, Ome-shi, Japan
Nobuhiro Konishi
Affiliation:
[email protected], Hitachi, Ltd., Micro Device Division, Ome-shi, Japan
Get access

Abstract

The effects of defects caused by Cu chemical-mechanical polishing (CMP) on time-dependent dielectric breakdown (TDDB) in a damascene structure incorporating a low-k interlevel dielectric layer were investigated experimentally. Comb line capacitor structures were prepared with one of three types of defects (rough Cu surface corrosion, Cu depletion, or crevice corrosion) and stressed at 3.2 to 6.2 MV/cm at 140°C. The first two defects had an insignificant effect on the TDDB characteristics while crevice corrosion at the edges of wires significantly degraded them. Investigation of the effects of Cu oxidation during post-CMP cleaning on the TDDB characteristics revealed that the formation of a non-uniform oxide layer accompanying deionized water rinsing was due to the dissolution of Cu oxide during the post-CMP cleaning process. When a barrier metal slurry containing a soluble inhibitor was used, non-uniform oxide formation on the Cu surfaces during post-CMP cleaning degraded the TDDB characteristics. These results demonstrate the importance of uniform Cu oxidation during post-CMP cleaning for improving the TDDB characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Takeda, K., Hinode, K., Oodake, I., Oohashi, N., and Yamaguchi, H., in International Reliability Physics Symposium, IEEE, pp. 3641 (1998).Google Scholar
2 Noguchi, J., IEEE Trans. Electron Devices 52, pp. 17431750 (2005).Google Scholar
3 Tokei, Zs., Sutcliffe, V., Demuynck, S., Iacopi, F., Roussel, P., Beyer, G. P., Hoofman, R. J. O. M., and Maex, K., in International Reliability Physics Symposium, IEEE, pp. 326332 (2004).Google Scholar
4 Yamada, Y., Konishi, N., Noguchi, J., Jimbo, T., Kurokawa, S., and Doi, T., Jpn. Appl. Phys., 47, 6, pp. 44694474 (2008).Google Scholar
5 Konishi, N., Yamada, Y., Noguchi, J., Tanaka, U., Jimbo, T., and Inoue, O., in International Interconnect Technology Conference, IEEE, pp. 123125 (2005).Google Scholar
6 Konishi, N., Yamada, Y., Noguchi, J., and Tanaka, U., in Advanced Metallization Conference, UC Berkeley Extension, pp. 127132 (2003).Google Scholar
7 Yamada, Y., Konishi, N., Watanabe, S., Noguchi, J., and Tanaka, U., in Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conference, IMIC, pp. 2834 (2004).Google Scholar
8 Noguchi, J., Konishi, N., and Yamada, Y., IEEE Trans. Electron Devices 52, pp. 934941 (2005).Google Scholar
9 Nakayama, S., Kimura, A., Shibata, M., Kuwabata, S., and Osaki, T., ˜J. Electrochem. Soc., 148, pp. B467472 (2001).Google Scholar
10 Miller, A. E., Fischer, P. B., Feller, A. D., and Cadien, K. C., in International Interconnect Technology Conference, IEEE, pp. 143145 (2001).Google Scholar
11 Yamada, Y., Yagi, Y., Konishi, N., Ogiso, N., Katsuyama, K., Asaka, S., Noguchi, J., and Miyazaki, T., J. Electrochem. Soc. 155, pp. H301306 (2008).Google Scholar
12 Chen, F., Chanda, K., Gill, I., AngyaI, M., Demarest, J., Sullivan, T., Kontra, R., Shinosky, M., Li, J., Economikos, L., Hoinkis, M., Lane, S., McHerron, D., Inohara, M., Boettcher, S., Dunn, D., Fukasawa, M., Zhang, B.C., Ida, K., Ema, T., Lembach, G., Kumar, K., Lin, Y., Maynard, H., Urata, K., Bolom, T., Inoue, K., Smith, J., Ishikawa, Y., Naujok, M., Ong, P., Sakamoto, A., Hunt, D., and Aitken, J., in International Reliability Physics Symposium, IEEE, pp. 501507 (2005).Google Scholar
13 Michelon, J. and Hoofman, R. J. O. M., IEEE Trans. Device and Materials Reliability, 6, pp. 169174 (2006).Google Scholar
14 Noguchi, J., Kubo, M., Tsuneda, R., Takeda, K., Miura, N., and Makabe, K., Jpn. J. Appl. Phys. 44, pp. 94101 (2005).Google Scholar