Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:01:38.575Z Has data issue: false hasContentIssue false

Influence of Boron Diffusion on Ultra-Thin Oxides

Published online by Cambridge University Press:  10 February 2011

T. Nigam
Affiliation:
IMEC, Kapeldreef 75, Leuven, Belgium
M. Depas
Affiliation:
IMEC, Kapeldreef 75, Leuven, Belgium
M. Heyns
Affiliation:
IMEC, Kapeldreef 75, Leuven, Belgium
C. J. Sofielc
Affiliation:
AEA Technology, 477 Harwell, Didcot, UK
L. Mapeldoram
Affiliation:
AEA Technology, 477 Harwell, Didcot, UK
Get access

Abstract

In this paper the effect of different annealing conditions on boron diffusion is studied for 3 nm gate dielectrics. The use of amorphous material instead of polycrystalline material and the influence of nitridation (two-step N2O oxidation) was investigated. A better control on the flatband voltage (VFB) shift was observed for amorphous-Si gate as compared to polycrystalline-Si gate. A reduction in VFB was observed for N2O oxides as compared to pure oxides, but VFB was still above the ideal value for some of the thermal treatments. A significant reduction in QBD is observed for p+ gates as compared to n+ gates. The lowest post-implantation anneal gives the highest QBD for all the different combinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Sung, J.M., Lu, C.Y., Chen, M.L., Hillenius, S.J., IEDM Tech. Digest 1989, p. 447450.Google Scholar
2. Baker, F.K., Pfiester, J.R., Mele, T.C., Tseng, H.H., Tobin, P.J., Hayden, J.D., Gunderson, C.D., and Parrillo, L.C., IEDM Tech. Digest 1989, p. 443445.Google Scholar
3. Tseng, H.H., Orlowski, M., Tobin, P.J., Hance, R.L., IEEE EDL 13, No. 1, p. 1416 (1992).Google Scholar
4. Fair, R.B., IEEE Electron Device Lett., 17, No. 5, p 242243 (1996).Google Scholar
5. Han, L.K., Wristers, D., Yan, J., Bhat, M., Kwong, D.L., IEEE EDL 16, No. 7, p 319321 (1995).Google Scholar
6. Krisch, K. S., Manchanda, L., Baumann, F.H., Green, M.L., Brasen, D., Feldman, L.C., Ourmazd, A., IEDM Tech Digest 1994, p325328.Google Scholar
7. Manchanda, L., Weber, G.R., Mansfield, W., Boulin, D.M., Krisch, K., et al, IEDM Tech. Digest 1993, p. 459462.Google Scholar
8. Liu, C.T., Ma, Y., Cheung, K.P., Chang, C.P. et al, VLSI Tech Digest 1996, p. 1819.Google Scholar
9. Tseng, H.H., Tobin, P.J., Baker, F.K., Pfiester, J.R., Evans, K., Fejes, P.L., IEEE Trans. Electron Devices 39, No. 7, p 16871693 (1992).Google Scholar
10. Miranda, E., Faigon, A., Campadal, F., Solid -State electronics, 41 No. 1, p. 6773 (1997).Google Scholar
11. Depas, M., Nigam, T., Heyns, M.M., IEEE Trans. Electron Dev. 43, p. 1499 (1996).Google Scholar
12. Nigam, T., Depas, M., IMEC Internal Report, (1996).Google Scholar
13. Wristers, D., Han, L.K., Chen, T., Wang, H.H., Kwong, D.L., Appl. Phys. Lett 68, No. 15, p. 20942096 (1996).Google Scholar
14. Wright, P.J. and Saraswat, K.C., IEEE Trans. Electron Dev. 36, No. 5, p. 879889 (1989).Google Scholar
15. Depas, M., Heyns, M.M., Nigam, T., Kenis, K., Sprey, H., Wilhelm, R., Crossley, A., Sofield, C., Graf, D. in The Physics of and Chemistry of SiO2 and Si-SiO2 Interface, edited by Massoud, H.Z., Poindexter, E.H., Helms, C.R. (ECS procedings), p. 352367 (1996).Google Scholar