Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:19:22.597Z Has data issue: false hasContentIssue false

Influence of a RF Plasma on the Nucleation of Aluminum Using N-Trimethylamine-Alane (TMAA) as Precursor

Published online by Cambridge University Press:  22 February 2011

A. Weber
Affiliation:
Fraunhofer-Institut fuür Schicht- und Oberflächentechnik (Fh-IST) Vogt-Kölln-Str. 30, W-2000 Hamburg 54, F.R.G.
U. Bringmann
Affiliation:
Fraunhofer-Institut fuür Schicht- und Oberflächentechnik (Fh-IST) Vogt-Kölln-Str. 30, W-2000 Hamburg 54, F.R.G.
K. Schiffmann
Affiliation:
Fraunhofer-Institut fuür Schicht- und Oberflächentechnik (Fh-IST) Vogt-Kölln-Str. 30, W-2000 Hamburg 54, F.R.G.
C.-P. Klages
Affiliation:
Fraunhofer-Institut fuür Schicht- und Oberflächentechnik (Fh-IST) Vogt-Kölln-Str. 30, W-2000 Hamburg 54, F.R.G.
Get access

Abstract

Aluminum films deposited on silicon with MOCVD methods generally exhibit a high surface roughness due to the hindered nucleation. To decrease the nucleation barrier a pretreat-ment of the wafer with TiCl4 vapor as a chemical activator is commonly suggested.

This work examines the influence of a rf hydrogen plasma on the nucleation of aluminum onSi and SiO2 using TMAA as precursor.

Atomic force microscopy (AFM) was used to determine the surface roughnesses and crystallite sizes of the aluminum deposits. Without plasma activation the nucleation barrier on Si(111) is substantially higher than on oxidized Si and therefore the pretreatment of the wafer plays an important role. The hydrogen plasma causes a substantial increase of the nucleus density leading to deposits with lower surface roughnesses compared to conventionalMOCVD aluminum. The influence of the substrate on the nucleation is almost “switched off” by the plasma activation and the grain sizes of Al on Si (111) and SiO2 differ only slightly. Relatively smooth films with a resistivity of 2.7 μΩcm are obtainable by employing a plasma activated nucleation step followed by a thermal MOCVD process. The increased nucleation rate is discussed in terms of kinetic effects of plasma activation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levy, R. A. and Green, M. L., J. Electrochem. Soc. 134, 37C (1987)Google Scholar
2. Pramanik, D. and Saxena, A. N., Solid State Technology 1, 127 (1990);Google Scholar
2. Pramanik, D. and Saxena, A. N., Solid State Technology 3, 73 (1990)Google Scholar
3. Bent, B. E., Nuzzo, R. G. and Dubois, L. H., J. Am. Chem. Soc. 111, 1634 (1989)Google Scholar
4. Chan, A. W. E. and Hoffmann, R. H., J. Vac. Sci. Technol. A 9, 1569 (1991)Google Scholar
5. Mantell, D. A., J. Vac. Sci. Technol. A 9, 1045 (1991)Google Scholar
6. Beach, D. B., Blum, S. E. and LeGoues, F. K., J. Vac. Sci. Technol. A 7, 3117 (1989)Google Scholar
7. Gross, M. E., Cheung, K. P., Fleming, C. G., Kovalchick, J. and Heimbrook, L. A., J. Vac. Sci. Technol. A 9, 63 (1991)Google Scholar
8. Gladfelter, W. L., Boyd, D. C. and Jensen, K. F., Chem. Mater. 1, 339 (1989)Google Scholar
9. Levy, R. A., Green, M. L. and Gallagher, P. K., J. Electrochem. Soc. 131, 2175 (1984)Google Scholar
10. Green, M. L., Levy, R. A., Nuzzo, R. G. and Coleman, E., Thin Solid Films 114, 367 (1984)Google Scholar
11. Tsao, J. Y. and Ehrlich, D. J., Appl. Phys. Lett. 45, 617 (1984)Google Scholar
12. Mantell, D. A., Appl. Phys. Lett. 53, 1387 (1988)Google Scholar
13. Higashi, G. S., Blonder, G. E. and Fleming, C. G., Mater. Res. Soc. Symp. Proc. 75, 117 (1987)Google Scholar
14. Kobayashi, T., Sekiguchi, A., Akiyama, N., Hoskawa, N. and Asamaki, T., J. Vac. Sci. Technol. A 10, 525 (1992)Google Scholar
15. Park Scientific Instruments, Sunnyvale, CA 94089, USAGoogle Scholar
16. Mantell, D. A., J. Vac. Sci. Technol. A 7, 630 (1989)Google Scholar
17. Nechiporenko, G. N., Petukhova, L. B. and Rozenberg, A. S., Izv. Akad. Nauk SSSR, Ser. Khim. 8, 1697 (1975)Google Scholar
18. Dubois, L. H., Zegarski, B. R., Kao, C.-T. and Nuzzo, R. G., Surf. Sci. 236, 77 (1990)Google Scholar
19. Weber, A., Bringmann, U., Klages, C.-P. and Nikulski, R., in Dünnschichttechnologien'92, (VDI Verlag, Dusseldorf, 1992), p. 110 Google Scholar
20. Kato, T., Ito, T. and Maeda, M., J. Electrochem. Soc. 135, 455 (1988)Google Scholar
21. Masu, K., Tsubouchi, K., Shigeeda, N., Matano, T. and Mikoshiba, N., Appl. Phys. Lett. 56, 1543 (1990)Google Scholar
22. Hess, D. W., Ann. Rev. Mater. Sci. 16, 163 (1986)Google Scholar