Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:01:59.460Z Has data issue: false hasContentIssue false

Indium in silicon: a study on diffusion and electrical activation.

Published online by Cambridge University Press:  01 February 2011

S. Scalese
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, 95121 Catania, Italy
A. La Magna
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, 95121 Catania, Italy
G. Mannino
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, 95121 Catania, Italy
V. Privitera
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, 95121 Catania, Italy
M. Bersani
Affiliation:
ITC-irst, via Sommarive 18, 38050 Povo (Trento), Italy
D. Giubertoni
Affiliation:
ITC-irst, via Sommarive 18, 38050 Povo (Trento), Italy
S. Solmi
Affiliation:
CNR-IMM Sezione Bologna, via Gobetti, 101, 40129 Bologna, Italy
P. Pichler
Affiliation:
Fraunhofer-Institute fuer Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, 91058 Erlangen, Germany
Get access

Abstract

In this work we investigate the diffusion and the electrical activation of In atoms implanted in silicon with different energies, in the range 80-360 keV, after rapid thermal processing. Our investigation shows a clear dependence of In out-diffusion and electrical activation on the implant depth, being the electrically active fraction higher with increasing the implant energy for a fixed dose. The data are explained considering the balance between the local In concentration and the C background inside the silicon substrate and the formation of C-In complexes, which play a role in the enhanced electrical activation due to the shallower level they introduce into the Si band gap (Ev+0.111 eV), with respect to the rather deep level (Ev+0.156 eV) of In alone. In and C co-implantation has also been studied within this work, in order to confirm the key role of C in the increase of the electrical activation. A large increase of the electrical activation has been detected in the co-implanted samples, up to a factor of about 8 after annealing at 900°C. However, C precipitation occurs at 1100°C, with dramatic effects on the carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Antoniadis, D.A., Moskowitz, I., J. of Appl. Phys. 53, 9214 (1982);Google Scholar
2. Griffin, P.B., Cao, M., Voorde, P. Vande, Chang, Y.-L., Greene, W.M., Appl. Phys. Lett 73, 2986 (1998);Google Scholar
3. Kizilyalli, I.C., Rich, T.L., Stevie, F.A., Rafferty, C.S., J. of Appl. Phys. 80, 4944 (1996);Google Scholar
5. Baron, R., Young, M. H., Neeland, J. K., Marsh, O. J., Appl. Phys. Lett. 30, 594 (1977);Google Scholar
6. Sato, A., Suzuki, K., Horie, H., Sugii, T., Proceedings of the 8th International Conference on Microelectronic Test Structures, New York: IEEE, 259263 (1995);Google Scholar
7. Liu, J., Jeong, U., Mehta, S., Sherbondy, J., Lo, A., Shim, K.H., Lim, J. E., Ion Implantation Technology – 2000, ed. by Ryssel, H., Frey, L., Gyulai, J., Glawischnig, H., Piscataway, NJ, USA: IEEE, 66, 69 (2000);Google Scholar
8. Solmi, S., Parisini, A., Bersani, M., Giubertoni, D., Soncini, V., Carnevale, G., Benvenuti, A., Marmiroli, A., J. of Appl. Phys. 92, 1361 (2002);Google Scholar
9. Boudinov, H., Souza, J.P. de, Saul, C.K., J. of Appl. Phys. 86, 5909 (1999);Google Scholar
10. Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980);Google Scholar
11. Chambost, E. De, Boyer, B., Rasser, B. and Schuhmacher, M., SIMS XII, Proceedings of the 12th International Conference on Secondary Ion Mass Spectrometry, Benninghoven, A., Bertrand, P., Migeon, H.-N. and Werner, H. W., Eds., Amsterdam: Elsevier Science, 2000, pp. 533536;Google Scholar
14. Raman, R., Law, M. E., Krishnamoorthy, V., Jones, K. S., Herner, S. B., Appl. Phys. Lett. 74, 1591 (1999);Google Scholar
21. Baron, R., Baukus, J. P., Allen, S. D., McGill, T. C., Young, M. H., Kimura, H., Winston, H. V., and Marsh, O. J., Appl. Phys. Lett. 34, 257 (1979);Google Scholar
22. Jones, C. E., Schafer, D., Scott, W., and Hager, R. J., J. of Appl. Phys. 52, 5148 (1981).Google Scholar