No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
The unloading of an indentation provides information about the shape of the indentation and the elastic properties of the materials. The assumptions of axisymmetry and material isotropy are critically examined, and a model for transversely isotropic materials is compared to measurements on single crystals. The methods used to infer the area of the indentation from the unloading curve are examined. The area is a fundamental value for the determination of hardness, modulus, and other mechanical properties in the so-called nano-indentor and other continuously monitored indentor techniques. The models of elastic recovery which are currently used are found to lack the flexibility to model the parameters which determine indentation depth. If the current self-consistent model is extended to cover the important aspects of the unloading, the area of the indentation is still not determined uniquely. Guidelines for further development of a unique model are suggested.