Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T23:22:40.924Z Has data issue: false hasContentIssue false

Increasing The Dark Conductivity Activation Energy in Undoped Microcrystalline Silicon by Post-Growth Anneals

Published online by Cambridge University Press:  17 March 2011

Jong-Hwan Yoon*
Affiliation:
Department of Physics, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-do 200-701, KOREA
Get access

Abstract

Undoped µc-Si:H film of the strong n-type character with the dark conductivity activation energy of about 0.28 eV was annealed. Annealing was carried out by slowly increasing the temperature from 25 °C to 450 °C at a constant rate of 12 °C/min (one annealing cycle). Annealing effects were monitored by measuring the changes in dark conductivity, oxygen and hydrogen concentrations, and photoluminescence (PL). Dark conductivity activation energy gradually increases with increasing the number of annealing cycles to a saturation value of about 0.6 eV. There is little or no change in the oxygen concentration, but the hydrogen concentration decreases with increasing the number of annealing cycles. The PL band near 1.2 eV disappears with annealing, while the low energy PL band near 0.85 eV dominates rather as the number of annealing cycles increases. A possible explanation will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65 (1994) 860.10.1063/1.112183Google Scholar
2. Fejfar, A., Beck, N., Stuchlíková, H., Wyrsch, N, Torres, P., Meier, J., Shah, A., and Kocka, J., J. Non-Cryst. Solids 227&230 (1998) 1006.Google Scholar
3. Torres, P., Meier, J., Flückiger, R., Kroll, U.. Selvan, J. A. Anna, Keppner, H., Shah, A., Littlewood, S. D., Kelly, I. E., and Giannoulés, P., Appl. Phys. Lett. 69 (1996) 1373.10.1063/1.117440Google Scholar
4. Flückiger, R., Meier, J., Goetz, M., and Shah, A., J. Appl. Phys. 77 (1995) 712.Google Scholar
5. Platz, R. and Wagner, S., Appl. Phys. Lett. 73 (1998) 1236.10.1063/1.122138Google Scholar
6. Lucovsky, G., Wang, C., Williams, M. J., Chen, Y. L., and Maher, D. M., Mater. Res. Soc. Proc. 283 (1993) 443.10.1557/PROC-283-443Google Scholar
7. Wang, C. and Lucovsky, G., Proceeding of 21st IEEE PVSEC (IEEE, New York, 1990), p. 1614.Google Scholar
8. Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., and Overhof, H., Mater. Res. Soc. Proc. 467 (1997) 283.Google Scholar
9. Yue, G., Lorentzen, J.D., Lin, J., and Han, Daxing, Appl. Phys. Lett. 75, 492 (1999).Google Scholar
10. Brehme, S., Kanschat, P. K., and Fuhs, W., Mater. Res. Soc. Proc. 609 (2000).Google Scholar