Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T00:09:23.852Z Has data issue: false hasContentIssue false

The Increased Response Time in Hydrogenated Microcrystalline Silicon - A Fermi Level Effect or a Structural Effect in a Grainy Material?

Published online by Cambridge University Press:  10 February 2011

S. Grebner
Affiliation:
Physics Department E16 (amg), Technical University of Munich, D-85747 Garching, FR Germany
P. Popovic
Affiliation:
Faculty of Electrical Engeneering, University of Ljubljana, 61000 Ljubljana, Slovenia
J. Furlan
Affiliation:
Faculty of Electrical Engeneering, University of Ljubljana, 61000 Ljubljana, Slovenia
Q. Gu
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244-1130, USA
R. Schwarz
Affiliation:
Physics Department E16 (amg), Technical University of Munich, D-85747 Garching, FR Germany
Get access

Abstract

The typical photocurrent decay time τR in intrinsic prepared hydrogenated microcrystalline silicon (μc-Si:H) is around lms similar to its n-doped amorphous counterpart (a-Si:H:P). Depending on the crystalline fraction Xc, the μc-Si:H films show an activation energy near to or below 0.5eV. To find out if this analogy ofτR could be due to a Fermi level shift or to the grainy structure in gc-Si:H films, we have studied the behaviour of τR in doped a-Si:H and gc-Si:H films of different XC. One-dimensional numerical simulation based on the Multiple Trapping Model (MTM) can explain this increase in terms of a Fermi level shift towards the conduction band. On the other hand, detailed measurements for temperatures from 100 to 400 K point to carrier trapping in deep states, most probably located at grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mishima, Y., Miyazaki, S., Hirose, M., Osaka, Y., Phil. Mag. B 46 (1982) 5 Google Scholar
2. Nakata, M., Shimizu, I., Mat. Res. Soc. Symp. Proc. 283 (1993) 591 Google Scholar
3. Grebner, S., Wang, F., Schwarz, R., Mat. Res. Soc. Symp. Proc. 283 (1993) 513 Google Scholar
4. LeComber, P.G., Willeke, G., Spear, W.E., J. Non-Cryst. Solids 59–60 (1983) 795 Google Scholar
5. Hapke, P., Finger, F., Carius, R., Wagner, H., Prasad, K., Flückinger, R., J. Non-Cryst. Solids 164 – 166 (1993) 981 Google Scholar
6. Hoheisel, M., Fuhs, W., Phil. Mag. B 57 (1988) 411 Google Scholar
7. Wang, F., Schwarz, R., Phys. Rev. B 52 (1995) 14586 Google Scholar
8. Ourmazd, A., Schroeter, W., Bourret, A., J. Appl. Phys. 56 (1984) 1670 Google Scholar
9. Schwarz, R., Wang, F., Grebner, S., Fischer, T., Koynov, S., Chu, V., Brogueira, P., Conde, J.P., J. Non-Cryst. Solids 164 – 166 (1993) 477 Google Scholar
10. Veprek, S., Sarott, F.A., Rampert, S., Taglauer, E., J. Vac. Science and Techn. A 74 (1989) 2614 Google Scholar
11. Koynov, S., Schwarz, R., Fischer, T., Grebner, S., Muender, H., Jpn. J. Appl. Phys. 33 (1994) 4534 Google Scholar
12. Liu, H.N., He, Y.L., Wang., F. Grebner, S., J. Non-Cryst. Solids 164 – 166 (1993) 1005 Google Scholar
13. Pandya, R., Schiff, E.A., Phil. Mag. B 52 (1985) 1075 Google Scholar
14. Müller, G., Kalbitzer, S., Mannsperger, H., Appl. Phys. A 39 (1986) 243 Google Scholar
15. Dash, W.C., Newman, R.C., Phys. Rev. 99(1955) 1151 Google Scholar
16. Wang, F., Schwarz, R., Grebner, S., Liu, H.N., He, Y.L., Yin, C.Z., Int. Conf Phys. Semicond. 21 Proc. 2 (1992) 2008 Google Scholar
17. Popovic, P., Bassanese, E., Smole, F., Furlan, J., Grebner, S., Schwarz, R., in MIDEM Symp. Proc., pp. 333, ed.: I., Sorli, B., Kren, M., Limpel, ISBN 961–90001-3–7, Ljubljana 1995 Google Scholar