Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:51:43.293Z Has data issue: false hasContentIssue false

Incorporation of Multi Wall Carbon Nanotubes into Glass-Surfaces via Laser-Treatment

Published online by Cambridge University Press:  15 February 2011

T. Seeger
Affiliation:
Instituto Carboquimica, CSIC, Miguel Luesma Castán 4; E-50015, ZaragozaSpain
G. de la Fuente
Affiliation:
ICMA, CSIC Universidad de Zaragoza, Maria de Luna 3; E-50015, ZaragozaSpain
W.K. Maser
Affiliation:
Instituto Carboquimica, CSIC, Miguel Luesma Castán 4; E-50015, ZaragozaSpain
A.M. Benito
Affiliation:
Instituto Carboquimica, CSIC, Miguel Luesma Castán 4; E-50015, ZaragozaSpain
A. Righi
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, France
J.L. Sauvajol
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, France
M. T. Martínez
Affiliation:
Instituto Carboquimica, CSIC, Miguel Luesma Castán 4; E-50015, ZaragozaSpain
Get access

Abstract

Carbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terrones, M., Hsu, W. K., Kroto, H. W., Walton, D. R. M., Fullerenes and Related Structures 199; Topics in Chemistry Series, edited by Hirsch, A. (Springer-Verlag, 1998) 189.Google Scholar
2. Kuzumaki, T., Ujiie, O., Ichinose, H., Ito, K., Adv. Eng. Mater. 2, 416 (2000)Google Scholar
3. Musa, I., Baxendale, M., Amaratunga, G.A.J., Eccleston, W., Synth. Met. 102, 1250 (1999).Google Scholar
4. Yoshino, K., Kajii, H., Araki, H., Sonoda, T., Take, H., Lee, S., Full. Sci. & Tech. 7, 695 (1999).Google Scholar
5. Seeger, T., Köhle, T.r, Frauenheim, T., Grobert, N., Rühle, M., Terrones, M., Seifert, G., Chem. Comm. 1, 34 (2002)Google Scholar
6. Seeger, T., Köhler, T., Frauenheim, T., Grobert, N., Terrones, M., Seifert, G., Rühle, M., Z. Metallk. 93, 455 (2002)Google Scholar
7. Widulle, F., Ruf, T., Buresch, O., Debernardi, A., Cardona, M., Phys. Rev. Letters 82 (15), 3089 (1999).Google Scholar
8. Nakashima, S., Harima, H., Tomita, T., Suemoto, T., Phys. Rev. B 62 (24), 16605 (2000)Google Scholar
9. Kobayashi, T., Sekine, T., He, H., Phys. Rev. Letters 85 (14), 2969 (2000).Google Scholar
10. Rohmfeld, S., Hundhausen, M., Ley, L., Schulze, N., Pensl, G., Phys. Rev. Letters 86 (5), 826 (2001).Google Scholar
11. Prokopenko, V. B., Dubrovinski, L. S., Dmitriev, V., Weber, H. P., J. Alloy. Compd. 327, 87 (2001).Google Scholar
12. Bader, E., Kreuzberger, T., Silikattechnik 35, 372 (1984)Google Scholar
13. Poch, W., Dietzel, A., Ber. Dt. Ker. Ges. 59, 413 (196Google Scholar