Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:04:56.042Z Has data issue: false hasContentIssue false

In vivo degradation behavior of PDC multiblock copolymers containing poly(para-dioxanone) hard segments and crystallizable poly(epsilon-caprolactone) switching segments

Published online by Cambridge University Press:  31 January 2011

Bernhard Hiebl
Affiliation:
[email protected], Berlin-Brandenburg-Centre for Regenerative Therapies, Bio-Engineering, Berlin, Berlin, Germany
Karl Kratz
Affiliation:
[email protected], Institute of Polymer Research, GKSS Research Center, Teltow, Germany
Rosemarie Fuhrmann
Affiliation:
[email protected], University of Ulm, Department for Biomaterials, Ulm, Bayern, Germany
Friedrich Jung
Affiliation:
[email protected], Berlin-Brandenburg-Centre for Regenerative Therapies, Bio-Engineering, Berlin, Berlin, Germany
Andres Lendlein
Affiliation:
[email protected], United States
Ralf-Peter Franke
Affiliation:
[email protected], Institute of Polymer Research, GKSS Research Center, Teltow, Germany
Get access

Abstract

The degradation behavior of biodegradable multiblock copolymers (PDC) containing poly(p-dioxanone) hard segments (PPDO) and crystallizable poly(epsilon-caprolactone) switching segments (PCL) synthesized via co-condensation of two oligomeric macrodiols with an aliphatic diisocyanate as junction unit was explored in in vivo and in vitro experiments. The in vitro experiments for enzymatic degradation resulted that the poly(epsilon-caprolactone) segments are degraded faster, than the poly(p-dioxanone) segments. During degradation the outer layer of the test specimen becomes porous. Finally non-soluble degradation products in form of particles were found at the surface. This observation is in good agreement with the in vivo studies, where the non-soluble degradation products in the periimplantary tissues showed a diameter of 1 – 3 micron.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hofmann, D., Entrialgo, M., Kratz, K., Lendlein, A., Knowledge-based approach towards hydrolytic degradation of polymer based biomaterials”, Adv. Matm. DOI:10.1002/adma.200802213, published online May 4 2009.10.1002/adma.200802213Google Scholar
2 Lendlein, A., Kelch, S., Angewandte Chemie International Edition 41, 2034 (2002).Google Scholar
3 Behl, M., Lendlein, A., Soft Matter 3, 58 (2007).10.1039/B610611KGoogle Scholar
4 Lendlein, A., Langer, R., Science 296, 1673 (2002).10.1126/science.1066102Google Scholar
5 Kratz, K., Voigt, U., Wagermaier, W., Lendlein, A., in Advances in Material Design for Regenerative Medicine, Drug Delivery, and Targeting/Imaging, edited by Shastri, V. P., Lendlein, A., Liu, L S., Mikos, A., Mitragotri, S. 1140-HH03-01, Mater. Res. Soc. Symp. Proc. Volume 1140E, Warrendale, PA (2009).Google Scholar
6 Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Proceeding of the National Academy of Science of the United States of America 103(10), 35403545 (2006).10.1073/pnas.0600079103Google Scholar
7 Kulkarni, A., Reiche, J., Hartmann, J., Kratz, K., Lendlein, A., European Journal of Pharmaceutics and Biopharmaceutics 68(1), 4656 (2008).10.1016/j.ejpb.2007.05.021Google Scholar
8 Reiche, J., Kulkarni, A., Kratz, K., Lendlein, A., Thin Solid Films 516, 88218828 (2008).10.1016/j.tsf.2007.11.053Google Scholar
9 Bakker, D, CA, van Blitterswijk, SC, Hesseling, ThW, Daems, Grote JJ. J. Biomed Mater Res 24: 277 (1990).10.1002/jbm.820240302Google Scholar
10 MB, Zajaczkowski, Cukierman, E, CG, Galbraith, KM, Yamada. Tissue Eng 2003; 9: 525 (2003)Google Scholar