No CrossRef data available.
Article contents
In Vitro Effects of Cementum Protein 1 (CEMP1) on Calcium Phosphate Crystal Formation and its Role During the Mineralization Process
Published online by Cambridge University Press: 31 January 2011
Abstract
Cementum contains specific molecules that could serve to identify, isolate and characterize the cementoblast lineage and to determine the cellular and molecular mechanisms that regulate the cementogenesis process, since it plays a key role during the periodontal regeneration process. One of these molecules is the human cementum protein 1 (CEMP1); which has a molecular weight of 25,9 kDa. In vitro experiments have shown that CEMP1 promotes cellular adhesion and differentiation. In addition, this protein has been implied in regulating the degree of deposition, composition and morphology of hydroxyapatite crystals formed by putative cementoblast in vitro. Therefore, it is possible that CEMP1 promotes the formation, growth and regulates the morphology of hydroxyapatite crystals in vitro. We have produced a human recombinant CEMP1 (hrCEMP1) in a prokaryotic system. The hrCEMP1 purification was realized using the column NiTA HisPrep FF/16. Assays of calcium phosphate crystal growth were realized by means of capillary counterdiffusion system. Our results demonstrated that hrCEMP1 promotes octacalcium phosphate crystal nucleation and possesses high affinity for hydroxyapatite. We infer that hrCEMP1 plays a key role during the regeneration of mineralized tissues.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009