Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:47:56.422Z Has data issue: false hasContentIssue false

In situ transmission electron microscopy of nano-sized metal clusters

Published online by Cambridge University Press:  01 February 2011

Jeff Th. M. De Hosson
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
George Palasantzas
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Tomas Vystavel
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Siete Koch
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Get access

Abstract

The paper concentrates on in situ transmission electron microscopy of nano-sized Mo and Nb clusters. In particular, this contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during deposition can be varied. The deposited Mo clusters with sizes 5 nm or larger show a body-centered crystal (bcc) structure. The cubic clusters are self-assembled from smaller ones and forming distorted cubes of typical size 7.8 nm or larger. With reducing cluster size to ≤3 nm, the face centered crystal (fcc) structure appears due to dominance of surface energy minimization, while self-assembly into large cubes with sizes up to 20 nm is still observed. In situ TEM annealing leads to cluster coalescence at temperatures ∼800 °C, with the crystal habit changing to rhombic dodecahedron for isolated clusters, while large cubes change to faceted polyhedra. In situ TEM annealing studies on Nb clusters showed that cluster coalescence events were not observed even at rather elevated temperatures because of the formation of oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haberland, H., Moseler, M., Qiang, Y., Rattunde, O., Reiners, T., and Thurner, Y., Surface Review and Letters 3, 887890 (1996).Google Scholar
2. Granqvist, C. G. and Buhrman, R. A., Journal of Applied Physics 47, 22002219 (1976).Google Scholar
3. For main reviews in the field see also: Binns, C., Surf. Sci. Rep. 44, 1 (2001);Google Scholar
Eberhardt, W., Surf. Sci. 500, 242 (2002);Google Scholar
Jensssen, P., Rev. Mod. Phys. 71, 1695 (1999);Google Scholar
Melinon, P. et al., Int. J. Mod. Phys. B 9, 339 (1995).Google Scholar
4. Vystavel, T., Palasantzas, G., Koch, S. A., Th, J., De Hosson, M., Appl. Phys. Lett. 82, 197, (2003)Google Scholar
5. Yao, D., Chen, Y. Y., Hsu, C. M., Lin, H. M., Tung, C. Y., Tai, M. F., Wang, D. H., Wu, K. T., and Suo, C. T., Nanostructured Materials 6, 933936 (1995).Google Scholar
6. Chen, Y. Y., Yao, Y. D., Wang, C. R., Li, W. H., Chang, C. L., Lee, T. K., Hong, T. M., Ho, J. C., and Pan, S. F., Physical Review Letters 84, 49904993 (2000).Google Scholar
7. Löffler, J. F., Braun, H.-B., and Wagner, W., Physical Review Letters 85, 19901993 (2000).Google Scholar
8. Binns, C., Baker, S. H., Maher, M. J., Louch, S., Thornton, S. C., Edmonds, K. W., Dhesi, S. S., and Brookes, N. B., physica status solidi (a) 189, 339350 (2002).Google Scholar
13. Gangopadhyay, S., Hadjipanayis, G. C., Shah, S. I., Sorensen, C. M., Klabunde, K. J., Papaefthymiou, V., and Kostikas, A., Journal of Applied Physics 70, 58885890 (1991).Google Scholar
10. Gong, W., Li, H., Zhao, Z., and Chen, J., Journal of Applied Physics 69, 51195121 (1991).Google Scholar
11. Gangopadhyay, S., Hadjipanayis, G. C., Dale, B., Sorensen, C. M., Klabunde, K. J., V. P., and, and Kostikas, A., Phys. Rev. B 45, 97789787 (1992).Google Scholar
12. Gangopadhyay, S., Hadjipanayis, G. C., Sorensen, C. M., and Klabunde, K. J., Journal of Applied Physics 73, 69646966 (1993).Google Scholar
13. Bødker, F., Mørup, S., and Linderoth, S., Phys. Rev. Lett. 72, 282285 (1994).Google Scholar
14. Holdenried, M., Hackenbroich, B., and Micklitz, H., Journal of Magnetism and Magnetic Materials 231, L13–L19 (2001).Google Scholar
15. Yao, Y. D., Chen, Y. Y., Hsu, C. M., Lin, H. M., Tung, C. Y., Tai, M. F., Wang, D. H., Wu, K. T., and Suo, C. T., Nanostructured Materials 6, 933936 (1995).Google Scholar
16. Vystavel, T., Palasantzas, G., Koch, S. A., Th, J., De Hosson, M., Appl. Phys. Lett. 83, 9309 (2003)Google Scholar
17. Edelstein, A. S., Chow, G. M., Altman, E. I., Colton, R. J., Hwang, D. M., Science 251, 1590 (1991).Google Scholar
18. Kaatz, H., Chow, G. M., Edelstein, A. S., J. Mater. Res. 8, 995 (1993).Google Scholar
19. Zhao, J., Chen, X., and Wang, G., Physics Letters A 214, 211214 (1996).Google Scholar
20. Berces, A., Hackett, P., Lian, L., Mitchell, S., and Rayner, D., Journal of Chemical Physics 108, 54765490 (1998).Google Scholar
21. Kumar, V. and Kawazoe, Y., Physical Review B 65, 125403 (2002).Google Scholar
22. Nanomaterials: synthesis, properties and applications; edited by Edelstein, A. S. and Cammarata, R. C. (Institute of Physics Publishing, Bristol, 1998).Google Scholar
23. Petrucci, M., Pitt, C. W., Reynolds, S. R., Milledge, H. J., Mendelssohn, M. J., Dineen, C., and Freeman, W. G., Journal of Applied Physics 63, 900909 (1988).Google Scholar
24. Macintyre, J.E. (ed.) in Dictionary of inorganic compounds, volumes 1–3, Chapman & Hall, London, UK, 1992.Google Scholar
25. Buffat, P. and Borel, J.-P., Physical Review A 13, 22872298 (1976).Google Scholar
32. Schmidt, M. and Haberland, H., Comptes Rendus Physique 3, 327340 (2002).Google Scholar
27. Lewis, L. J., Jensen, P., and Barrat, J.-L., Physical Review B 56, 22482257 (1997).Google Scholar
28. Haberland, H., Karrais, M., Mall, M., Thurner, Y., J. Vac. Sci. Technol. A 10, 3266 (1992);Google Scholar
Haberland, H. et al., Nucl. Instrum. Methods Phys. Res. Sect. B 80/81, 1320 (1993).Google Scholar
29. Yamada, I., Nucl. Instrum. Meth. B 55, 544 (1991).Google Scholar