Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:14:28.489Z Has data issue: false hasContentIssue false

In Situ Spectroscopic Approach to Atomic Layer Deposition

Published online by Cambridge University Press:  11 February 2011

Martin M. Frank
Affiliation:
Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, NJ 08854, U.S.A. Agere Systems, Murray Hill, NJ 07974, U.S.A.
Yves J. Chabal
Affiliation:
Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, NJ 08854, U.S.A. Agere Systems, Murray Hill, NJ 07974, U.S.A.
Glen D. Wilk
Affiliation:
ASM America, Phoenix, AZ 85034, U.S.A. Agere Systems, Murray Hill, NJ 07974, U.S.A.
Get access

Abstract

There is great need for a mechanistic understanding of growth chemistry during atomic layer deposition (ALD) of films for electronic applications. Since commercial ALD reactors are presently not equipped for in situ spectroscopy, we have constructed a model reactor that enables single-pass transmission infrared spectroscopy to be performed in situ on a layer-by-layer basis. We demonstrate the viability of this approach for the study of aluminum oxide growth on silicon surfaces, motivated by alternative gate oxide applications. Thanks to submonolayer dielectric and adsorbate sensitivity, we can quantify oxide thicknesses and hydroxyl areal densities on thermal and chemical SiO2/Si(100) substrates. Methyl formation and hydroxyl consumption upon initial trimethylaluminum (TMA) reaction can also be followed. We verify that in situ grown Al2O3 films are compatible in structure to films grown in a commercial ALD reactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritala, M., Leskelä, M., in Handbook of Thin Film Materials, edited by Nalwa, H.S. (Academic Press, 2002), Vol. 234, pp. 183198.Google Scholar
2. Bender, H., Conard, T., Nohira, H. et al., Extended Abstracts of International Workshop on Gate Insulator. IWGI 2001 (IEEE Cat. No.01EX537) 86.Google Scholar
3. Busch, B.W., Pluchery, O., Chabal, Y.J., Muller, D.A., Opila, R.L., Kwo, J.R., Garfunkel, E., MRS Bulletin 27, 206 (2002).Google Scholar
4. Ott, A.W., Klaus, J.W., Johnson, J.M., George, S.M., Thin Solid Films 292, 135 (1997).Google Scholar
5. De Smedt, F., Vinckier, C., Cornelissen, I., De Gendt, S., Heyns, M., J. Electrochem. Soc. 147, 1124 (2000).Google Scholar
6. Queeney, K.T., Weldon, M.K., Chang, J.P., Chabal, Y.J., Gurevich, A.B., Sapjeta, J., Opila, R.L., J. Appl. Phys. 87, 1322 (2000).Google Scholar
7. Van Cauwelaert, F.H., Jacobs, P.A., Uytterhoeven, J.B., J. Phys. Chem. 76, 1434 (1972).Google Scholar
8. Bergna, H.E., in The Colloid Chemistry of Silica, edited by Bergna, H.E. (American Chemical Society, Washington, DC, 1994), Vol. 234, pp. 147.Google Scholar
9. Morrow, B.A., McFarlan, A.J., J. Non-Cryst. Solids 120, 61 (1990).Google Scholar
10. Gurevich, A.B., Stefanov, B.B., Weldon, M.K., Chabal, Y.J., Raghavachari, K., Phys. Rev. B 58, R13434 (1998).Google Scholar
11. Gurevich, A.B., Stefanov, B.B., Weldon, M.K., Chabal, Y.J. (unpublished results).Google Scholar
12. Frank, M.M., Chabal, Y.J., Green, M.L., Delabie, A., Brijs, B., Wilk, G.D., Ho, M.-Y., da Rosa, E.B.O., Stedile, F.C., Baumvol, I.J.R. (in manuscript).Google Scholar
13. Puurunen, R.L., Root, A., Haukka, S., Iiskola, E.I., Lindblad, M., Krause, A.O.I., J. Phys. Chem. B 104, 6599 (2000).Google Scholar
14. Kong, M. J., Lee, K. S., Lyubovitsky, J., Bent, S. F., Chem. Phys. Lett. 263, 1 (1996).Google Scholar
15. Frank, M.M., Chabal, Y.J., Wilk, G.D. (submitted).Google Scholar
16. Colaianni, M.L., Chen, P.J., Gutleben, H., Yates, J.T. Jr, Chem. Phys. Lett. 191, 561 (1992).Google Scholar