Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T03:13:14.404Z Has data issue: false hasContentIssue false

In Situ, Real-Time Curvature Imaging During Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

David A. Boyd
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology Pasadena, CA 91125
Ashok B. Tripathi
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology Pasadena, CA 91125
Mohamed El-Naggar
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology Pasadena, CA 91125
David G. Goodwin
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology Pasadena, CA 91125
Get access

Abstract

Coherent Gradient Sensing (CGS) is a full-field optical technique that produces real-time images of macroscopic wafer curvature, which, for thin films, can be related to stress through Stoney's equation. Here we describe the use of CGS as an in situ diagnostic to observe film stress distributions during chemical vapor deposition. The application of this method to measure oxygen diffusion rates in thin film YBa2Cu3O6+δ(YBCO) and stresses in thin film PbxBa1-xTiO3 (PBT) under chemical vapor deposition (CVD) conditions will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stoney, G. G.. Proc. Roy. Soc. (London), page 172, 1909.Google Scholar
2. Phillips, M. A., Ramaswamy, V., Clemens, B. M., and Nix, W.D.. J. Matrs. Rsch., 15(11):2540, 2000.Google Scholar
3. Lee, Y. J., Lambros, J., and Rosakis, A. J.. Optics and Lasers in Engineering, 25:25, 1996.Google Scholar
4. Rosakis, A. J., Singh, R. P., Tsuji, Y., Kolawa, E., and Moore, N. R. Jr Thin Solid Films, 325:42, 1998.Google Scholar
5. Malacara, D., Servin, M., and Malacara, Z.. Interferogram Analysis for Optical Testing. Marcel Decker, Inc., 1998.Google Scholar
6. Kircher, J., Kelly, M. K., Rashkeev, S., Alouani, M., Fuchs, D., and Cardona, M.. Phys. Rev. B, 44:217, 1991.Google Scholar
7. Umemura, T., Egawa, K., Wakata, M., and Yoshizaki, K.. Japan. J. Appl. Phys., 28, 1989.Google Scholar
8. Grader, G. S., Gallagher, P. K., Thomson, J., and Gurvitch, M.. Appl. Phys. A, 45:179, 1988.Google Scholar
9. Krauns, C. and Krebs, H.. Z. Phys. B, 92:43, 1993.Google Scholar
10. Yamamoto, K., Lairson, B. M., Bravman, J. C., and Geballe, T. H.. J. Appl. Phys., 69:7189, 1991.Google Scholar
11. Speck, J. S. and Pompe, W.. J. App. Physics, 76(1):466, 1994.Google Scholar