Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T18:09:47.077Z Has data issue: false hasContentIssue false

Impurity-Induced Layer Disordering in AlxGa1−xAs-GaAs Quantum well Heterostructures -

Published online by Cambridge University Press:  21 February 2011

D. G. Deppe
Affiliation:
Electrical Engineering Research Laboratory, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
L. J. Guido
Affiliation:
Electrical Engineering Research Laboratory, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
N. Holonyak Jr
Affiliation:
Electrical Engineering Research Laboratory, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

Selective interdiffusion of Al and Ga at AlxGa1−x As-GaAs heterointerfaces can be carried out by conventional masking procedures and diffusion of acceptor impurities (e.g., Zn), or donor impurities (e.g., Si), or also by ion implantation. This process, impurity-induced layer disordering (IILD), makes it possible to convert quantum well heterostructures (QWHs) such as AlxGa1−xAs-GaAs superlattices (SLs) into bulk homogeneous AlyGa1−yAs where y is the average Al composition of the QWH or SL. Since th IILY process is maskable and thus selective, heterojunctions can be formed in directions perpendicular to the crystal growth direction, i.e., between as-grown “ordered” and IILD “disordered” regions. To date this process has been used most effectively in the fabrication of buriedheterostructure QW lasers, single and multiple stripe, where the disordered regions provide both optical and electrical confinement. The IILD process has also been used to advantage in the fabrication of high power laser diodes with non-absorbing “windows” at the laser facets and thus with better immunity from facet damage. In this paper we present data on the application of the IILD process to the fabrication of buried-heterostructure QW laser diodes. We also describe possible mechanisms by which the impurity-induced layer disordering proceeds based on Column III “Frenkel” defects and the influence of the crystal Fermi level on the defect solubility. These mechanisms are supported by experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
2. One of us (N. H.) in 1980 proposed that we search for phonon replicas in the photoluminescence of quantum well heterostructures by converting an undoped Alx Ga1x.As-GaAs superlattice to p-type via relatively low temperature Zn ditfusion. The result was IILD.Google Scholar
3. Holonyak, N. Jr,. and Laidig, W. D., U. S. Patent No. 4,378,255, March 29, 1983 (Filed May 6, 1981).Google Scholar
4. Devine, R. L. S., Foxon, C. T., Joyce, B. A., Clegg, J. B., and Govers, J. P., Appl. Phys. A 44, 195 (1987).CrossRefGoogle Scholar
5. Kaliski, R. W., Nam, D. W., Deppe, D. G., Holonyak, N. Jr,., Hsieh, K. C., and Burnham, R. D., J. Appl. Phys. 62, 998 (1987).CrossRefGoogle Scholar
6. Meehan, K., Holonyak, N. Jr., Brown, J. M., Nixon, M. A., Gavrilovic, P., and Burnham, R. D., Appl. Phys. Lett. 45, 549 (1984).CrossRefGoogle Scholar
7. Kaliski, R. W., Gavrilovic, P., Meehan, K., Gavrilovic, J., Hsieh, K. C., Jackson, G. S., Holonyak, N. Jr., Coleman, J. J., Burnham, R. D., Thornton, R. L., and Paoli, T. L., J. Appl. Phys. 58, 101 (1985).CrossRefGoogle Scholar
8. Rao, E. V. K., Ossart, P., Alexandre, F., and Thibierge, H., Appl. Phys. Lett. 50, 588 (1987).CrossRefGoogle Scholar
9. Rao, E. V. K., Thibierge, H., Brillouet, F., Alexandre, F., and Azoulay, R. A., Appl. Phys. Lett. 46, 867 (1985).CrossRefGoogle Scholar
10. Deppe, D. G., Holonyak, N. Jr., Hsieh, K. C., Gavrilovic, P., Stutuis, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).CrossRefGoogle Scholar
11. Gavrilovic, P., Deppe, D. G., Meehan, K., Holonyak, N. Jr., Coleman, J. J., and Burnham, R. D., Appl. Phys. Lett. 47, 130 (1985).CrossRefGoogle Scholar
12. Hirayama, Y., Suzuki, Y., Tarucha, S., and Okamoto, H., Jpn. J. Appl. Phys. 24, L516 (1985).CrossRefGoogle Scholar
13. Hirayama, Y., Suzuki, Y., and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).CrossRefGoogle Scholar
14. Ralston, J., Wicks, G. W., Eastman, L. F., DeCooman, B. C., and Carter, C. B., J. Appl. Phys. 59, 120 (1986).CrossRefGoogle Scholar
15. Deppe, D. G., Hsieh, K. C., Holonyak, N. Jr,. Burnham, R. D., and Thornton, R. L., J. Appl. Phys. 58, 4515 (1985).CrossRefGoogle Scholar
16. Gavrilovic, P., Meehan, K., Epler, J. E., Holonyak, N. Jr., Burnham, R. D., Thornton, R. L., and Streifer, W., Appl. Phys. Lett. 46, 857 (1985).CrossRefGoogle Scholar
17. Thornton, R. L., Burnham, R. D., Paoli, T. L., Holonyak, N. Jr,., and Deppe, D. G., Appl. Phys. Lett. 48, 7 (1986).CrossRefGoogle Scholar
18. Deppe, D. G., Jackson, G. S., Holonyak, N. Jr., Burnham, R. D., and Thornton, R. L., Appl. Phys. Lett. 50, 632 (1987).CrossRefGoogle Scholar
19. Thornton, R. L., Welch, D. F., Burnham, R. D., Paoli, T. L., and Cross, P. S., Appl. Phys. lett. 49, 1572 (1986).CrossRefGoogle Scholar
20. Casey, H. C. Jr., in Atomic Diffusion in Semiconductors, edited by Shaw, D. (Plenum, New York, 1973), pp. 367369.Google Scholar
21. Guido, L. J., Holonyak, N. Jr., Hsieh, K. C., Kaliski, R. W., Piano, W. E., Burnham, R. D., Thornton, R. L., Epler, J. E., and Paoli, T. L., J. Appl. Phys. 61, 1372 (1987).CrossRefGoogle Scholar
22. Furuya, A., Wada, O., Takamori, A., and Hashimoto, H., Jpn. J. Appl. Phys. 26, L926 (1987).CrossRefGoogle Scholar
23. Reiss, H., J. Chem. Phys. 21, 1209 (1953).CrossRefGoogle Scholar
24. Longini, R. L. and Greene, R. F., Phys. Rev. 102, 992 (1956).CrossRefGoogle Scholar
25. Shockley, W. and Moll, J. L., Phys. Rev. 119, 1480 (1960).CrossRefGoogle Scholar
26. KöUger, F. A., The Chemistry of Imperfect Crystals, Vol.2, (North Holland, 1974), pp. 79.Google Scholar
27. Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).CrossRefGoogle Scholar
28. Deppe, D. G., Holonyak, N. Jr., Piano, W. E., Robbins, V. M., Dallesasse, J. M., Hsieh, K. C., and Baker, J. E., unpublished data.Google Scholar
29. Kawabe, M., Shimizu, N., Hasegawa, F., and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).CrossRefGoogle Scholar
30. U. Gösele and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
31. Winteler, H. R., Helvetica Phys. Acta 43, 496 (1970); 44, 451 (1971).Google Scholar
32. Deppe, D. G., Nam, D. W., Holonyak, N. Jr., Hsieh, K. C., Baker, J. E., Kuo, C. P., Fletcher, R. M., Osentowski, T. D., and Craford, M. G., Appl. Phys. Lett. 52, (25 April 1988).Google Scholar
33. Van Vechten, J. A., J. Appl. Phys. 53, 7082 (1982).CrossRefGoogle Scholar
34. Coleman, J. J., Dapkus, P. D., Kirkpatrick, C. G., Camras, M. D., and Holonyak, N. Jr., Appl. Phys. Lett. 40, 904 (1982).CrossRefGoogle Scholar
35. Guido, L. J., Hsieh, K. C., Holonyak, N. Jr,. Kaliski, R. W., Eu, V., Feng, M., and Burnham, R. D., J. Appl. Phys. 61, 1329 (1987).CrossRefGoogle Scholar
36. Vieland, L. J., J. Phys. Chem. Solids 21, 318 (1961).CrossRefGoogle Scholar
37. Antell, G. R., Solid-State Electron. 8, 943 (1965).CrossRefGoogle Scholar
38. Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 750 (1984).CrossRefGoogle Scholar
39. Deppe, D. G., Holonyak, N. Jr., Kish, F. A., and Baker, J. E., Appl. Phys. Lett. 50, 998 (1987).CrossRefGoogle Scholar
40. Deppe, D. G., Holonyak, N. Jr., and Baker, J. E., Appl. Phys. Lett. 52, 129 (1988).CrossRefGoogle Scholar