Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T05:09:31.271Z Has data issue: false hasContentIssue false

Impurity-Defect Complexes in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

Lin H. Yang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
C. Y. Fong
Affiliation:
Department of Physics, University of California, Davis, CA 95616, USA.
Carol S. Nichols
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Get access

Abstract

The two most outstanding features observed for dopants in hydrogenated amorphous silicon (a-Si:H) - a shift in the Fermi level accompanied by an increase in the defect density and an absence of degenerate doping - have previously been postulated to stem from the formation of substitutional dopant-dangling bond complexes. Using firstprinciples self-consistent pseudopotential calculations in conjunction with a supercell model for the amorphous network and the ability of network relaxation from the first-principles results, we have studied the electronic and structural properties of substitutional fourfoldcoordinated phosphorus and boron at the second neighbor position to a dangling bond defect. We demonstrate that such impurity-defect complexes can account for the general features observed experimentally in doped a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Phys. Rev. Lett. 49, 1187 (1982);Google Scholar
J. Non-Cryst. Sol. 77&78, 1 (1985).Google Scholar
2. Robertson, J., Phys. Rev. B 28, 4647 (1983).Google Scholar
3. Chen, I. and Jansen, F., Phys. Rev. B 29, 3759 (1984).Google Scholar
4. Robertson, J., Phys. Rev. B 31, 3817 (1985).Google Scholar
5. Street, R. A., Biegelsen, D. K., and Knights, J. C., Phys. Rev. B 24, 265 (1981).Google Scholar
6. Dersch, H., Stuke, J., and Biechler, J., Phys. Status Solidi B 105, 265 (1981).Google Scholar
7. Kocka, J., J. Non-Cryst. Sol. 90, 91 (1987).CrossRefGoogle Scholar
8. Kocka, J., Vanecek, M., and Schauer, F., J. Non-Cryst. Sol. 97&98, 715 (1987).Google Scholar
9. Guttman, L. and Fong, C. Y., Phys. Rev. B 26, 6756 (1982).Google Scholar
10. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
11. Hamann, D. R., Phys. Rev. B 40, 2980 (1989).CrossRefGoogle Scholar
12. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
13. Teter, M. P., Payne, M. C., and Allan, D. C., Phys. Rev. B 40, 12255 (1989).Google Scholar
14. von Roedern, B., Ley, L., Cardona, M., and Smith, F. W., Phil. Mag. B 40, 433 (1979).Google Scholar
15. Adler, D., in Physical Properties of Amorphous Materials, edited by Adler, D., Schwartz, B. B., and Steele, M. C. (Plenum, New York, 1985), pg. 5.Google Scholar
16. Gelatos, A. V., Mahvadi, K. K., Cohen, J. D., and Harbison, J. P., Appl. Phys. Lett. 53, 403 (1988).Google Scholar