Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:44:39.107Z Has data issue: false hasContentIssue false

Impurity Diffusion During RTA

Published online by Cambridge University Press:  25 February 2011

R.B. Fair*
Affiliation:
Microelectronics Center of North Carolina, Research Triangle Park, North Carolina 27709
Get access

Abstract

Enhanced dopant diffusion during RTA depends upon whether the following physical phenomena occur individually or in combination: (1) amorphization of the Si, (2) damage-induced dislocation formation, (3) damage annealing, (4) self-interstitial trapping, (5) solubility enhancement. RTA of B in crystalline or preamorphized Si presents significantly different environments for enhanced diffusion. In preamorphized Si, enhanced B diffusion is modeled as increased B solubility following SPE. In addition, a different intrinsic diffusivity is observed which corresponds to B diffusion in preamorphized Si. Anomalous diffusion of B and As from high dose implants can be modeled with the same mechanism -- self-interstitial trapping following SPE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benton, J.L., Celler, G.K., Jacobson, D.C., Kimberling, L.C., Lischner, D.J., Miller, G.L. and Robinson, Mc. D., Mat. Res. Soc. Sym. Proc., ”Laser and Electron Beam Interactions with Solids”, eds. Appleton, B.R. and Celler, G.K., vol. 4, p. 765 (Elsevier Publishing Co., 1982).Google Scholar
2. Fair, R.B., Wortman, J.J., Liu, J., Tischler, M., Masnari, N.A., and Duh, K.Y., Device Research Conference, Burlington, VT, 1983.Google Scholar
3. Sadana, D.K., Shatas, S.C. and Gat, A., Proc. of Microscopy of Semiconducting Materials, Inst. of Phys. London, 1983 (in press).Google Scholar
4. Kalish, R., Sedgwick, T.O., Mader, S., Shatas, S., Applied Phys. Lett., 44, 107 (1984).Google Scholar
5. Fair, R.B., Wortman, J.J. and Liu, J., 1983 International Electron Device Meeting, Tech. Dig., p. 658 (1983).Google Scholar
6. Hodgson, R.T., Deline, V., Mader, S.M., Morehead, F.F., and Gelpey, J. in “Energy Beam-Solid Interactions and Transient Thermal Processing” (Fan, ICC and Johnson, N.M., eds. New York) 1984.Google Scholar
7. Fair, R.B., Wortman, J.J. and Liu, J., J. Electrochem. Soc., 131, 2387 (1984).Google Scholar
8. Panteleev, VA., Baryshev, R.S., Lainier, L.V., Zinina, A.G. and Pakkutina, E.F.. Fiz. Tuerd. Tela, 16, 502 (1974)Google Scholar
9. Calder, I.D., Nagub, H.M., Vandervorst, W., Houghton, D., and Shepherd, F.R., Materials Research Society, Fall 1984 Meeting, paper A5.4Google Scholar
10. Ryssel, H., Hoffman, K., Haberger, K., Prinke, G. and Müller, K., Meeting of the Electrochemical Society, Spring 1980, St. Louis (unpublished).Google Scholar
11. Seidel, T.E., Knoell, R., Stevie, FA., Poli, G. and Schwartz, B. in “VLSI Science and Technology/1984,” (eds. Bean, K.E. and Rozgonyi, G.A., The Electrochem. Soc., Pennington, N.J. 1984) p. 201.Google Scholar
12. Sadana, D.K., private communicationGoogle Scholar
13. Maszara, W., Carter, C., Sadana, D.K., Liu, J., Ozguz, V., Wortman, J. and Rozgonyi, G.A., Proc. of the Materials Research Society; Energy Beam-Solid Interactions and Transient Processing, Boston, Mass., Nov. 13-17, 1983, p. 303.Google Scholar
14. Crowder, B.L., Ziegler, J.F. and Cole, G.W., Ion Implantation in Semiconductors and Other Materials (Yorktown Heights), Plenum, New York, 1973, p. 257.Google Scholar
15. PREDICT computer program - PRocess Estimater for the Design of IC Technologies.Google Scholar
16. Ghostagore, R.N., Phys. Rev. B., 389 (1971).Google Scholar
17. Fair, R.B., J. Electrochem Soc., 122, 800 (1975).Google Scholar
18. Pennycook, S.J., Narayan, J. and Holland, O.W., to be published.Google Scholar
19. Pennycook, S.J., Narayan, J., and Holland, O.W., J. Appl. Phys., 55, 837 (1984).Google Scholar
20. Morehead, F.F and Crowder, B.L. in First Inter. Conf. on Ion Implantation, Thousdand Oaks, eds. Eisen, F. and Chadderton, L. (Gordon and Breach, New York, 1971) p. 25.Google Scholar
21. Csepregi, L., Mayer, J.W. and Sigmon, T.W., Appl Phys. Lett, 29, 92 (1976).Google Scholar
22. Kalish, R., Sedgwick, T.O., Mader, S. and Shatas, S., Appl. Phys. Lett., 44, 107 (1984)Google Scholar
23. Sedgwick, T.O., Cohen, SA., ,Oehrlein, G.S., Deline, V.R., Kalish, R. and Shatas, S., in “VLSI Science and Technology/1984, (eds. Bean, K.E. and Rozgonyi, G.A., The Electrochem. Soc., Pennington, N.J. 1984) p. 192.Google Scholar
24. Powell, R.A., Yep, T.O. and Fulks, R.T., Appl. Phys. Lett., 39, 150 (1981).Google Scholar
25. Narayan, J., Holland, O.W., Eby, R.E., Wortman, J.J., Ozguz, V. and Rozgonyi, G.A., Appl. Phys. Lett., 43, 957 (1983).Google Scholar
26. Kwor, R., Kwang, D.L., Yeo, Y.K., Appl. Phys. Lett, 45, 77 (1984).Google Scholar
27. Williams, J.S. and Elliman, R.G., Appl. Phys. Lett., 37, 829 (1980).Google Scholar
28. Oehrlein, G.S., Cohen, S.A. and Sedgwick, T.O., Appl. Phys. Lett., 45, 417 (1984).Google Scholar