Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T05:58:58.361Z Has data issue: false hasContentIssue false

Improvement of methanol oxidation catalytic activities of radiochemically synthesized PtRu/C nanoparticles by post annealing process

Published online by Cambridge University Press:  13 March 2014

Satoshi Seino
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Masato Morisue
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Yuji Ohkubo
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Junichiro Kugai
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Takashi Nakagawa
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Takao A. Yamamoto
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Get access

Abstract

Electrode catalysts composed of carbon supported PtRu nanoparticles (PtRu/C) synthesized by radiochemical process were annealed to control the PtRu substructure to enhance catalytic activity. The substructure of the PtRu nanoparticles synthesized by using high-energy electron beam under acidic condition was Pt-rich core/Ru-rich shell type, reflecting the redox potentials of each precursor ions. The material characterization techniques revealed that the reductive annealing led to the mixing of PtRu both in the core and on the surface. The sample with annealing temperature of 300°C for 5 hour showed the highest methanol oxidation current, 2.3 times higher than that obtained with before annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Watanabe, M. and Motoo, S., J Electroanal Chem 60 (1975) 267273.CrossRefGoogle Scholar
Davies, J., Bonde, J., Logadottir, A. and Norskov, J., Chorkendorff, I., Fuel Cells, 5 (2005) 429435.CrossRefGoogle Scholar
Desai, S., and Neurock, M., Electrochim Acta, 48 (2003) 37593773.CrossRefGoogle Scholar
Ge, Q., Desai, S., Neurock, M. and Kourtakis, K.,105 (2001) 95339536.Google Scholar
Daimon, H., Onodera, T., Honda, Y., Nitani, H., Seino, S., Nakagawa, T. and Yamamoto, T. A. ECS Trans 11 (2008) 93100.CrossRefGoogle Scholar
Nitani, H., Nakagawa, T., Daimon, H., Kurobe, Y., Ono, T., Honda, Y., Koizumi, A., Seino, S., Yamamoto, T. A., Appl Catal A 326 (2007) 194201.CrossRefGoogle Scholar
Yamamoto, T. A., Kageyama, S., Seino, S., Nitani, H., Nakagawa, T., Horioka, R., Honda, Y., Ueno, K. and Daimon, H., Appl Catal A,3 396 (2011) 6875.CrossRefGoogle Scholar
Kageyama, S., Seino, S., Nakagawa, T., Nitani, H., Ueno, K., Daimon, H. and Yamamoto, T. A., J Nanopart Res 13 (2011) 52755287.CrossRefGoogle Scholar
Ohkubo, Y., Kageyama, S., Seino, S., Nakagawa, T., Kugai, J., Nitani, H., Ueno, K., Yamamoto, T. A., J Nanopart Res, 15 (2013) art. no.1597.CrossRefGoogle Scholar
Seino, S., Kinoshita, T., Otome, Y., Maki, T., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K. and Yamamoto, T.A., Scripta Materialia 51 (2004) 467472.CrossRefGoogle Scholar
Suzuki, S., Onodera, T., Kawaji, J., Mizukami, T., Takamori, Y., Daimon, H., and Morishima, M., Electrochemistry, 79 (2011) 602608.CrossRefGoogle Scholar
Park, H. Y., Jeon, T. Y., Jang, J. H., Yoo, S. J., Choi, K. H., Jung, N., Chung, Y. H., Ahn, M., Cho, Y. H., Lee, K. S., and Sung, Y. E., Applied Catalysis B: Environmental 129 (2013) 375381.CrossRefGoogle Scholar
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F. and Nilsson, A., Nature Chem, 2 (2010) 454460.CrossRefGoogle Scholar
Heggen, M., Oezaslan, M., Houben, L., and Strasser, P., J. Phys. Chem. C 116 (2012) 1907319083.CrossRefGoogle Scholar