Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:31:11.709Z Has data issue: false hasContentIssue false

Improved Temperature Stability of Atomic Layer Deposition Coated Cellulose Nanocrystal Aerogels

Published online by Cambridge University Press:  29 May 2012

Sean W. Smith
Affiliation:
School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, U.S.A.
Han Chan
Affiliation:
Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR 97331, U.S.A.
Christian Buesch
Affiliation:
School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, U.S.A.
John Simonsen
Affiliation:
Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR 97331, U.S.A.
John F. Conley Jr.
Affiliation:
School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, U.S.A.
Get access

Abstract

Atomic layer deposition (ALD) was used to coat cellulose nanocrystal (CNC) aerogel scaffolds with a thin conformal layer of Al2O3. Electron probe microanalysis indicates that the penetration of Al2O3 into the aerogel was greater than 50 μm. Thermogravimetric analysis (TGA) shows that Al2O3 coated CNC aerogel composites have improved temperature and oxidation resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Chem. Soc. Rev. 40, 3941 (2011).10.1039/c0cs00108bGoogle Scholar
2. Carcia, P. F., McLean, R. S., Sauer, B. B., and Reilly, M. H., J. Nanosci. Nanotech. 11, 7994 (2011) .10.1166/jnn.2011.5075Google Scholar
3. Puurunen, R. L., J. Appl. Phys. 97, 121301 (2005).10.1063/1.1940727Google Scholar
4. Korhonen, J. T., Hiekkataipale, P., Malm, J., Karppinen, M., Ikkala, O., and Ras, R. H. A., ACS Nano 5, 1967 (2011).10.1021/nn200108sGoogle Scholar
5. Kettunen, M., Silnennoinen, R. J., Houbenov, N., Nykanen, A., Ruokolainen, J., Sainio, J., Pore, V., Kemell, M., Ankerfors, M., Lindstrom, T., Ritala, M., Ras, R. H. A., and Ikkala, O., Adv. Funct. Mater. 21, 510 (2011).10.1002/adfm.201001431Google Scholar
6. Biener, J., Bauman, T. F., Wang, Y., Nelson, E. J., Kucheyev, S. O., Hamza, W. V., Kemell, M., Ritala, M., and Leskelä, M., Nanotechnology, 18, 055303 (2007).10.1088/0957-4484/18/5/055303Google Scholar
7. Ghosal, S., Baumann, T.F., King, J.S., Kucheyev, S. O., Wang, Y., Worsley, M.A., Biener, J., Bent, S. F., and Hamza, A. V., Chem. Mater. 21, 1989 (2009).10.1021/cm900636sGoogle Scholar
8. Elam, J.W., Libera, J. A., Pellin, M. J., Zinovev, A. V., Greene, J. P., and Nolen, J. A., Appl. Phys. Lett. 89, 053124 (2006).10.1063/1.2245216Google Scholar
9. Kucheyev, S. O., Biener, J., Wang, Y. M., Baumann, T. F., Wu, K. J., Buuren, T., Hamza, A. V., Satcher, J. H. Jr., Elam, J. W., and Pellin, M. J., App. Phys. Let. 86, 083108 (2005).10.1063/1.1870122Google Scholar
10. Noorani, S., Simonsen, J., and Atre, S., ACS Symposium Series No. 938 (Oksman, K. & Sain, M., eds.) Amer. Chem. Soc., Washington, D.C. (2006)Google Scholar
11. Besemer, A. C., de Nooy, A. E. J., and van Bekkum, H., in Cellulose Derivatives (ACS Publications, 1998) p. 73.10.1021/bk-1998-0688.ch005Google Scholar
12. Bragd, P. L., Besemer, A. C., and van Bekkum, H., J. Mol. Cat. A: Chem. 170, 35 (2001).10.1016/S1381-1169(01)00061-9Google Scholar
13. de Nooy, A. E., Besemer, A. C., and van Bekkum, H., Carb. Research 269, 89 (1995).10.1016/0008-6215(94)00343-EGoogle Scholar
14. de Nooy, A. E., Besemer, A. C., van Bekkum, H., and van Dijk, J. A. P., Macromolecules, 29, 6541 (1996).10.1021/ma960492tGoogle Scholar