Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:25:15.083Z Has data issue: false hasContentIssue false

Improved Spectral Response of Quantum Dot Solar Cells Using InAs Multi-stack High Density Quantum Dot Molecules

Published online by Cambridge University Press:  01 February 2011

Ong-arj Tangmettajittakul
Affiliation:
[email protected], Chulalongkorn University, Electrical engineering, Bangkok, Bangkok, Thailand
Supachok Thainoi
Affiliation:
[email protected], Chulalongkorn University, Electrical engineering, Bangkok, Thailand
Pornchai Changmoang
Affiliation:
[email protected], Chulalongkorn University, Electrical engineering, Bangkok, Thailand
Songphol Kanjanachuchai
Affiliation:
[email protected], Chulalongkorn University, Electrical engineering, Bangkok, Thailand
Somchai Rattanathammaphan
Affiliation:
[email protected], Chulalongkorn University, Electrical engineering, Bangkok, Thailand
Somsak Panyakeow
Affiliation:
Get access

Abstract

In this paper, we report the spectral response measurement of Schottky solar cells with conventional quantum dots (QDs) and high-density quantum dot molecules (HD-QDMs) as active layers. 3-stack HD-QDMs Schottky structure is compared to 15-stack QD Schottky structure and control sample without QDs. 15-stack conventional InAs QDs give narrow response peak centered at 907 nm while 3-stack InAs HD-QDMs give broad peak between 915 and 985 nm. Both spectral responses are extended beyond the band edge of GaAs, i.e. 870 nm. 42 % more photovoltaic power could be evident from the extended spectral response curve comparing to that of GaAs bulk sample without dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Green, M.A., Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost, Springer-Verlag, Berlin, 2003.Google Scholar
[2] Huang, R-T, Ghandhi, S. K., Borrego, J. M., Sol. Energy Mater., 13, 469479, 1986 Google Scholar
[3] Cuadra, L., Marti, A., Luque, A., Thin Solid Films, 451–452, 593599, 2004 Google Scholar
[4] Conibeer, G., Green, M., Corkish, R., Cho, Y., Cho, E., Jiang, C., Fangsuwannarak, T., Pink, E., Huang, Y., Puzzer, T., Trupke, T., Richards, B., Shalav, A. and Lin, K., Thin Solid Films, 511–512, 654662, 2006 Google Scholar
[5] Luque, A., Marti, A., Sol. Energy Mater. Sol. Cel, 94, 287296, 2010 Google Scholar
[6] Marti, A., Cuadra, L., Luque, A., Proc. of the 28th IEEE Photovoltaics Specialists Conference, IEEE, New York, 940, 2000.Google Scholar
[7] Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G., Phys. Rev. Lett. 65, 1020, 1990 Google Scholar
[8]. Shigetomi, J., Fuwa, K., Shimizu, S., Yamakawa, H., J. Crystal Growth, lll, 110, 1991.Google Scholar
[9] Sanguietti, S., Padovani, M., Gurioli, M., Grilli, E., Guzzi, M., Appl. Phys. Lett. 77, 9, 1307, 2000.Google Scholar
[10] Suraprapapich, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S., J. Vac. Sci. Technol. B 23(3), 2005 Google Scholar
[11] Laouthaiwattana, K., Tangmattajittakul, O., Suraprapapich, S., Thainoi, S.,Changmuang, P., Kanjanachuchai, S., Ratanathammaphan, S., Panyakeow, S., Sol. Energy Mater. Sol. Cell 93, 746749, 2009 Google Scholar