Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T03:24:40.900Z Has data issue: false hasContentIssue false

Improved Photocatalytic H2 Evolution from Inorganic/Organic Sacrificial Solution over Ni-Doped (CuIn)0.2Zn1.6S2 Photocatalysts

Published online by Cambridge University Press:  07 July 2011

Xianghui Zhang
Affiliation:
State Key Lab of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Dengwei Jing
Affiliation:
State Key Lab of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Liejin Guo
Affiliation:
State Key Lab of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Get access

Abstract

The Ni-doped (CuIn)0.2Zn1.6S2 photocatalysts were prepared via a two-step ultrasonic-hydrothermal method under an environmental-friendly condition. XRD pattern profiles suggested that Ni2+ successfully doped into (CuIn)0.2Zn1.6S2 lattice. UV-Vis spectra indicated that the optical properties of the photocatalysts greatly depended on the amount of Ni doped. SEM images show that the samples were microspheres. The microsphere structures were gradually damaged with the increment of Ni doping amount. The photoactivity of (CuIn)0.2Zn1.6S2 was enhanced when Ni2+ was doped into the crystal structure. The H2 evolution performance over the prepared samples from inorganic/organic sacrificial solution was systematic investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K., Nature 440, 295 (2006).10.1038/440295aGoogle Scholar
2. Chen, X., Shen, S., Guo, L. and Mao, S. S., Chem. Rev. 110, 6503 (2010).10.1021/cr1001645Google Scholar
3. Fujishima, A. and Honda, K., Nature 238, 37 (1972).10.1038/238037a0Google Scholar
4. Ebina, Y., Tanaka, A., Kondo, J. N. and Domen, K., Chem. Mater. 8, 2534 (1996).10.1021/cm960232qGoogle Scholar
5. Li, Y., Chen, G., Zhang, H., Li, Z. and Sun, J., J. Solid State Chem. 181, 2653 (2008).10.1016/j.jssc.2008.05.020Google Scholar
6. Ishikawa, A., Takata, T., Matsumura, T., Kondo, J. N., Hara, M., Kobayashi, H. and Domen, K., J. Phys. Chem. B 108, 2637 (2004).10.1021/jp036890xGoogle Scholar
7. Tsuji, I. and Kudo, A., J. Photochem. Photobiol. A 156, 249 (2003).10.1016/S1010-6030(02)00433-1Google Scholar
8. Bubler, N., Meier, K. and Reber, J. F., J. Phys. Chem. 88, 3261 (1984).Google Scholar
9. Zheng, L., Xu, Y., Song, Y., Wu, C., Zhang, M. and Xie, Y., Inorg. Chem. 48, 4003 (2009).10.1021/ic802399fGoogle Scholar
10. Tsuji, I., Kato, H., Kobayashi, H. and Kudo, A., J. Am. Chem. Soc. 126, 13406 (2004).10.1021/ja048296mGoogle Scholar
11. Zhang, X., Du, Y., Zhou, Z. and Guo, L., Int. J. Hydrogen Energy 35, 3313 (2010).10.1016/j.ijhydene.2010.01.111Google Scholar
12. Liu, G., Zhao, L., Ma, L. and Guo, L., Catal. Commun. 9, 126 (2008).10.1016/j.catcom.2007.05.036Google Scholar
13. Zhang, X., Jing, D., Liu, M. and Guo, L., Catal. Commun. 9, 1720 (2008).10.1016/j.catcom.2008.01.032Google Scholar
14. Zou, Z. and Arakawa, H., J. Photochem. Photobiol. A 158, 145 (2003).10.1016/S1010-6030(03)00029-7Google Scholar
15. Li, Y., Hu, Y., Peng, S., Lu, G. and Li, S., J. Phys. Chem. C 113, 9352 (2009).10.1021/jp901505jGoogle Scholar
16. Jing, D., Liu, M., Shi, J., Tang, W. and Guo, L., Catal. Commun. 12, 264 (2010).10.1016/j.catcom.2010.09.031Google Scholar
17. Morales, A. E., Mora, E. S. and Pal, U., Rev. Mex. Fis. S53, 18 (2007).Google Scholar
18. Zhang, Z., Wang, C., Zakaria, R. and Ying, J., J. Phys. Chem. B 102, 10871 (1998).10.1021/jp982948+Google Scholar
19. Colón, G., Maicu, M., Hidalgo, M. C. and Navío, J. A., Appl. Catal. B 67, 41 (2006).10.1016/j.apcatb.2006.03.019Google Scholar
20. Wu, Y. and Lu, G., J. Mol. Catal. 15, 467 (2001).Google Scholar
21. Peng, S., Peng, Y., Li, Y., Lu, G. and Li, S., Res. Chem. Intermed. 35, 739 (2009).10.1007/s11164-009-0091-zGoogle Scholar
22. Li, Y., Wang, J., Peng, S., Lu, G. and Li, S., Int. J. Hydrogen Energy 35, 7116 (2010).10.1016/j.ijhydene.2010.02.017Google Scholar
23. Zheng, X., Wei, Y., Wei, L., Xie, B. and Wei, M.. Int. J. Hydrogen Energy 35, 11709 (2010).10.1016/j.ijhydene.2010.08.090Google Scholar