Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:48:27.985Z Has data issue: false hasContentIssue false

Improved Passivation of a-Si:H / c-Si Interfaces Through Film Restructuring

Published online by Cambridge University Press:  01 February 2011

Michael Zanoni Burrows
Affiliation:
[email protected], University of Delaware, Materials Science, 451 Wyoming Rd., Newark, DE, 19713, United States, 302-981-5545
U. K. Das
Affiliation:
[email protected], University of Delaware, Insititue of Energy Conversion, 451 Wyoming Rd., Newark, DE, 19713, United States
S. Bowden
Affiliation:
[email protected], University of Delaware, Insititue of Energy Conversion, 451 Wyoming Rd., Newark, DE, 19713, United States
S. S. Hegedus
Affiliation:
[email protected], University of Delaware, Insititue of Energy Conversion, 451 Wyoming Rd., Newark, DE, 19713, United States
R. L. Opila
Affiliation:
[email protected], University of Delaware, Materials Science and Engineering, 201 Dupont Hall, Newark, DE, 19716, United States
R. W. Birkmire
Affiliation:
[email protected], University of Delaware, Insititue of Energy Conversion, 451 Wyoming Rd., Newark, DE, 19713, United States
Get access

Abstract

The as-deposited passivation quality of amorphous silicon films on crystalline silicon surfaces is dependent on deposition conditions and resulting hydrogen bonding structure. However the initial surface passivation can be significantly improved by low temperature post-deposition anneal. For example an improvement in effective lifetime from 780 μsec as-deposited to 2080 μsec post-anneal is reported in the present work. This work probes the hydrogen bonding environment using monolayer resolution Brewster angle transmission Fourier transform infrared spectroscopy of 100 Å thick films. It is found that there is significant restructuring at the a-Si:H / c-Si interface upon annealing and a gain of mono-hydride bonding at the c-Si surface is detected. Calculations show an additional 3.56 − 4.50 × 1014 cm−2 mono-hydride bonding at c-Si surface due to annealing. The estimation of the surface hydride oscillator strength in transmission mode is reported for the first time to be 7.2 × 10−18 cm on Si (100) surface and 7.5 × 10−18 cm on Si (111).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taguchi, M. Terakawa, A. Maruyama, E. et al. , Progress in Photovoltaics 13 (6), 13 (2005).Google Scholar
2. Burrows, M. Das, U. Lu, M. Bowden, S. Opila, R. and Birkmire, R. Mater. Res. Soc. Symp. Proc. 989, San Francisco, 431436 (2007)Google Scholar
3. Das, U.K. Burrows, M. Lu, M. Hegedus, S. Bowden, S. and Birkmire, R. 22nd European Solar Energy Conference, Milan, Italy (2007).Google Scholar
4. Brodsky, M. H. Cardona, M. and Cuomo, J. J. Physical Review B 16 (8), 16 (1977).Google Scholar
5. Bhattacharya, E. and Mahan, A. H. Applied Physics Letters 52, 15871589 (1988).Google Scholar
6. Miyazaki, S. Schafer, J. Ristein, J. et al. , Applied Physics Letters 68 (9), 68 (1996).Google Scholar
7. Street, R. A. Hydrogenated Amorphous Silicon, Cambridge University Press, 1991, Cambridge.Google Scholar
8. Chabal, Y. J. Higashi, G. S. Raghavachari, K. and Burrows, V. A. J. Vac. Sci. Technol. A 7 (3), 21042109 (1998).Google Scholar
9. Shinohara, M. Kuwano, T. Akama, Y. Kimura, Y. Niwano, M. Ishida, H. and Hatakeyama, R. J. Vac. Sci Technol. A 21 (1), 2531 (2003).Google Scholar
10. Higashi, G. S. Chabal, Y. J. Trucks, G. W. and Raghawachari, K. Appl. Phys. Lett. 56 (7), 656658 (1989).Google Scholar
11. Henrion, W. Rebien, M. Angermann, H. and Roeseler, A. App. Surf. Sci. 202, 199205 (2002).Google Scholar
12. Smets, A. H. M. Kessels, W. M. M. Sanden, M. C. M. de, Appl. Phys. Lett. 82 (10), 15471549 (2003).Google Scholar
13. Oura, K. Yamane, J. Umezawa, K. Naitoh, M. Shoji, F. and Hanawa, T. Phys. Rev. B 41 (2), 12001203 (1990).Google Scholar
14. Marra, D. C. Edelberg, E. A. Naone, R. L. and Aydil, E. S. J. Vac. Sci Technol. A 16(6) 31993210 (1998).Google Scholar
15. Das, U.K. Burrows, M.Z. Lu, M. Bowden, S. and Birkmire, R. W. Applied Physics Letters 92 (6), 92 (2008).Google Scholar
16. Burrows, M. Z. Das, U. K. Opila, R. L. Wolf, S. De, and Birkmire, R. W. J. Vac. Sci Technol. A 4 (2008) (accepted).Google Scholar
17. Fujiwara, H. Toyoshima, Y. Kondo, M. and Matsuda, A. Physical Review B 60, 1359813604 (1999).Google Scholar
18. Garin, M. Rau, U. Brendle, W. Martin, I. and Alcubilla, R. J. of App. Phys. 98, 093711 (2005).Google Scholar