Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:16:13.915Z Has data issue: false hasContentIssue false

Improved hydrogen storage kinetics of nanoconfined LiBH4-MgH2 reactive hydride composites catalyzed with nickel Nanoparticles

Published online by Cambridge University Press:  15 June 2012

Thomas K. Nielsen
Affiliation:
Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
Marek Polanski
Affiliation:
Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bjarne R. S. Hansen
Affiliation:
Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
Søren Tolborg
Affiliation:
Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
Dorthe B. Ravnsbæk*
Affiliation:
Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
Flemming Besenbacher
Affiliation:
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
Jerzy Bystrzycki
Affiliation:
Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Jørgen Skibsted
Affiliation:
Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
Torben R. Jensen
Affiliation:
Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
Get access

Abstract

LiBH4 and MgH2 both have high gravimetric and volumetric hydrogen storage densities. Unfortunately, their commercial application is prevented by high thermal stability and unfavorable thermodynamic properties. Combining the two hydrides leads to a new decomposition pathway with suitable enthalpy of reaction. However, the kinetics for hydrogen release remains an obstacle but can be improved by nanoconfinement in nano porous carbon materials. Here we report on nanoconfinement of 2LiBH4-MgH2 in Ni functionalized carbon aerogels. 11B MAS NMR reveals that the nanoconfined hydrides react reversibly with hydrogen whereas simultaneous differential scanning calorimetry and mass spectroscopy clearly show that nanoconfinement facilitates lower hydrogen release temperatures than ball milling. Furthermore, Ni functionalization of the nanoporous aerogel leads to even lower hydrogen release temperatures from nanoconfined 2LiBH4-MgH2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Graetz, J., Chem. Soc. Rev. 38, 7382 (2009)Google Scholar
2. Schlapbach, L. and Züttel, A., Nature 414, 353358 (2001)Google Scholar
3. Züttel, A., Borgschulte, A. and Schlapbach, L., Wiley-VHC Meinheim Germany, (2008)Google Scholar
4. Eberle, U., Felderhoff, M. and Schüth, F., Angew. Chem. Int. Ed. 48, 66086630 (2009)Google Scholar
5. Rude, L. H., Nielsen, T. K., Ravnsbaek, D. B., Bösenberg, U., Ley, M. B., Richter, B., Arnbjerg, L. M., Dornheim, M., Filinchuk, Y., Besenbacher, F., et al. ., Phys. Status Solidi A 208, 17541773 (2011)Google Scholar
6. Liu, X. F., Peaslee, D., Jost, C. Z., Baumann, T. F. and Majzoub, E. H., Chem. Mater. 23, 13311336 (2011)Google Scholar
7. Friedrichs, O., Borgschulte, A., Kato, S., Buchter, F., Gremaud, R., Remhof, A. and Züttel, A., Chem. Eur. J. 15, 55315534 (2009)Google Scholar
8. Mosegaard, L., Møller, B., Jørgensen, J. E., Filinchuk, Y., Cerenius, Y., Hanson, J. C., Dimasi, E., Besenbacher, F. and Jensen, T. R., J. Phys. Chem. C 112, 12991303 (2008)Google Scholar
9. Zuttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P. and Emmenegger, C., J. Power Sources 118, 17 (2003)Google Scholar
10. Her, J. H., Yousufuddin, M., Zhou, W., Jalisatgi, S. S., Kulleck, J. G., Zan, J. A., Hwang, S. J., Bowman, R. C. and Udovic, T. J., Inorg. Chem. 47, 97579759 (2008)Google Scholar
11. Polanski, M., Nielsen, T. K., Cerenius, Y., Bystrzycki, J. and Jensen, T. R., Int. J. Hydrogen Energy 35, 35783582 (2010)Google Scholar
12. Friedrichs, O., Sánchez-López, J. C., López-Cartes, C., Klassen, T., Bormann, R. and Fernández, A., J. Phys. Chem. B 110, 78457850 (2006)Google Scholar
13. Lu, J., Choi, Y. J., Fang, Z. Z., Sohn, H. Y. and Rönnebro, E., J. Am. Chem. Soc. 132, 66166617 (2010)Google Scholar
14. Barkhordarian, G., Klassen, T. and Bormann, R., J. Phys. Chem. B 110, 1102011024 (2006)Google Scholar
15. Ravnsbæk, D. B., Cerný, R., Filinchuk, Y. and Jensen, T. R., Z. Kristallogr. 225, 557569 (2010)Google Scholar
16. Rude, L. H., Groppo, E., Arnbjerg, L. M., Ravnsbaek, D. B., Malmkjaer, R. A., Filinchuk, Y., Baricco, M., Besenbacher, F. and Jensen, T. R., J. Alloys Compd. 509, 82998305 (2011)Google Scholar
17. Ravnsbaek, D. B. and Jensen, T. R., J. Phys. Chem. Solids 71, 11441149 (2010)Google Scholar
18. Dornheim, M., Eigen, N., Barkhordarian, G., Klassen, T. and Bormann, R., Adv. Eng. Mater. 8, 377385 (2006)Google Scholar
19. Mauron, P., Buchter, F., Friedrichs, O., Remhof, A., Bielmann, M., Zwicky, C. N. and Züttel, A., J. Phys. Chem. B 112, 906910 (2008)Google Scholar
20. Orimo, S. I., Nakamori, Y., Eliseo, J. R., Züttel, A. and Jensen, C. M., Chem. Rev. 107, 41114132 (2007)Google Scholar
21. Vajo, J. J., Skeith, S. L. and Mertens, F., J. Phys. Chem. B 109, 37193722 (2005)Google Scholar
22. Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., Jensen, T. R., Cerenius, Y., Gutfleisch, O., Klassen, T., et al. ., Acta Mater. 55, 39513958 (2007)Google Scholar
23. Bösenberg, U., Ravnsbæk, D. B., Hagemann, H., D’Anna, V., Minella, C. B., Pistidda, C., van Beek, W., Jensen, T. R., Bormann, R. and Dornheim, M., J. Phys. Chem. C 114, 1521215217 (2010)Google Scholar
24. Barkhordarian, G., Klassen, T., Dornheim, M. and Bormann, R., J. Alloys Compd. 440, L18L21 (2007)Google Scholar
25. Price, T. E. C., Grant, D. M., Legrand, V. and Walker, G. S., Int. J. Hydrogen Energy 35, 41544161 (2010)Google Scholar
26. Vajo, J. J., Li, W. and Liu, P., Chem. Commun. 46, 66876689 (2010)Google Scholar
27. de Jongh, P. E. and Adelhelm, P., ChemSusChem 3, 13321348 (2010)Google Scholar
28. Nielsen, T. K., Jensen, T. R. and Besenbacher, F., Nanoscale 3, 20862098 (2011)Google Scholar
29. Fichtner, M., Phys. Chem. Chem. Phys. 13, 2118621195 (2011)Google Scholar
30. Vajo, J. J., Curr. Opin. Solid State Materials 15, 5261 (2011)Google Scholar
31. Gutowska, A., Li, L. Y., Shin, Y. S., Wang, C. M. M., Li, X. H. S., Linehan, J. C., Smith, R. S., Kay, B. D., Schmid, B., Shaw, W., et al. ., Angew. Chem. Int. Ed. 44, 35783582 (2005)Google Scholar
32. Gosalawit-Utke, R., Nielsen, T. K., Saldan, I., Laipple, D., Cerenius, Y., Jensen, T. R., Klassen, T. and Dornheim, M., J. Phys. Chem. C 115, 1090310910 (2011)Google Scholar
33. Nielsen, T. K., Bösenberg, U., Gosalawit, R., Dornheim, M., Cerenius, Y., Besenbacher, F. and Jensen, T. R.,ACS Nano 4, 39033908 (2010)Google Scholar
34. Nielsen, T. K., Polanski, M., Zasada, D., Javadian, P., Besenbacher, F., Bystrzycki, J., Skibsted, J. and Jensen, T. R., ACS Nano 5, 40564064 (2011)Google Scholar
35. Gross, A. F., Ahn, C. C., Van Atta, S. L., Liu, P. and Vajo, J. J., Nanotechnology 20, 204005 (2009)Google Scholar
36. Ngene, P., van Zwienen, M. and de Jongh, P. E., Chem. Commu.n 46, 82018203 (2010)Google Scholar
37. Gross, A. F., Vajo, J. J., Van Atta, S. L. and Olson, G. L., J. Phys. Chem. C 112, 56515657 (2008)Google Scholar
38. Al-Muhtaseb, S. A. and Ritter, J. A., Adv. Mater. 15, 101114 (2003)Google Scholar
39. Nielsen, T. K., Manickam, K., Hirscher, M., Besenbacher, F. and Jensen, T. R., ACS Nano 3, 35213528 (2009)Google Scholar
40. Zhang, S., Gross, A. F., Van Atta, S. L., Lopez, M., Liu, P., Ahn, C. C., Vajo, J. J. and Jensen, C. M., Nanotechnology 20, 204027 (2009)Google Scholar
41. Deboer, J. H., Linsen, B. G., Vanderpl, T and Zonderva, Gj, J. Catal. 4, 649-& (1965)Google Scholar
42. Brunauer, S., Emmett, P. H. and Teller, E., J. Am. Chem. Soc. 60, 309319 (1938)Google Scholar
43. Barrett, E. P., Joyner, L. G. and Halenda, P. P., J. Am. Chem. Soc. 73, 373380 (1951)Google Scholar
44. Johnson, S. R., Anderson, P. A., Edwards, P. P., Gameson, I., Prendergast, J. W., Al-Mamouri, M., Book, D., Harris, I. R., Speight, J. D. and Walton, A., Chem. Commun. 22, 28232825 (2005)Google Scholar
45. Arnbjerg, L. M., Ravnsbaek, D. B., Filinchuk, Y., Vang, R. T., Cerenius, Y., Besenbacher, F., Jorgensen, J. E., Jakobsen, H. J. and Jensen, T. R., Chem Mater 21, 57725782 (2009)Google Scholar
46. Hwang, S. J., Bowman, R. C., Reiter, J. W., Rijssenbeek, J., Soloveichik, G. L., Zhao, J. C., Kabbour, H. and Ahn, C. C., J. Phys. Chem. C 112, 31643169 (2008)Google Scholar
47. Li, W., Vajo, J. J., Cumberland, R. W., Liu, P., Hwang, S. J., Kim, C. and Bowman, R. C., J. Phys. Chem. Lett. 1, 6972 (2010)Google Scholar