Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T02:20:21.617Z Has data issue: false hasContentIssue false

Improved Electrical Properties of BaTiO3 – coated CaCu3Ti4O12 Dielectrics

Published online by Cambridge University Press:  12 July 2012

Hui Eun Kim
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea
Sung Yun Lee
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea
Sang-Im Yoo*
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea
Get access

Abstract

We report a significant improvement in the electrical properties of CaCu3Ti4O12 (CCTO) dielectrics by the BaTiO3 (BTO) additive. The addition of BTO to CCTO was performed using two different methods of a solid-state mixing and a sol-gel coating. Compared with pure CCTO ceramics (εr ∼ 52,000 and tanδ ∼ 0.38 at 100 kHz), BTO-added CCTO samples commonly showed a large improvement in the dielectric loss property although their dielectric constants were depressed around one order of magnitude; εr ∼ 5900 and tanδ ∼0.05 for 5 mol% BTO-coated CCTO sample and εr ∼ 4,075 and tanδ ∼ 0.02 for 5 mol% BTO-mixed CCTO sample. In addition, BTO-coated CCTO samples showed relatively lower leakage current than those of BTO-mixed CCTO samples, implying that the sol-gel coating is more effective for improving the electrical properties of CCTO.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Subramanian, M.A., Li, D., Duan, N., Reisner, B. A., and Sleight, A. W. J., J. Sol. Stat. Chem., 151, 323 (2000).CrossRefGoogle Scholar
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P., Science., 293, 673 (2001).Google Scholar
Ramirez, A. P., Subramanian, M. A., and Gardel, M., Sol. Stat. Comm., 115, 217 (2000).CrossRefGoogle Scholar
Deng, G., He, Z., and Muralt, P., J. Appl. Phys., 105, 084106 (2009).CrossRefGoogle Scholar
Sinclair, D. C., Adams, T. B., and Morrison, F. D., Appl. Phys. Lett., 80, 2153 (2002).Google Scholar
Fechine, P. B. A., Almeida, A. F. L., Freire, F. N. A., Santos, M. R. P., Pereira, F. M. M., Jimenez, R., Mendiola, J., and Sombra, A. S. B., Mater. Chem. Phys., 96, 402 (2006).CrossRefGoogle Scholar
Guo, L., Luo, H., Gao, J., Guo, L., and Yang, J., Mater. Lett., 60, 3011 (2006).CrossRefGoogle Scholar
Phillips, N. J., Calzada, M. L., and Milne, S. J., J. Non-Cryst. Sol., 147/148, 285 (1992).CrossRefGoogle Scholar
Nosaka, Y., Jimbo, M., Aizawa, M., and Fuji, M., J. Mater. Sci. Lett. 10, 406 (1991).CrossRefGoogle Scholar
Mchallem, N. D. S. and Andre, M., Mater. Res. Soc. Symp. Proc., 121, 515 (1988).Google Scholar
Boulos, M., Guillement-Fritsch, S., Mathieu, F., Durand, B., Lebey, T., and Bley, V., Sol. Stat. Ionics, 176, 1301 (2005).CrossRefGoogle Scholar
Xu, H., Gao, L., J. Am. Ceram. Soc. 86, 203 (2003).CrossRefGoogle Scholar
Vinothini, V., Singh, P., and Balasubramanian, M., Ceram. Int. 32, 99 (2006).CrossRefGoogle Scholar
Duran, P., Gutierrez, D., Tartaj, J., and Moure, C., Ceram. Int. 28, 283 (2002).CrossRefGoogle Scholar
Buscaglia, V., Viviani, M., Buscaglia, M. T., Nanni, P., Mitoseriu, L., Testino, A., Stytsenko, E., Daglish, M., Zhao, Z., and Nygren, M., Powder Tech., 148, 24 (2004).CrossRefGoogle Scholar
Kamalsanan, M. N., Chandra, S., Joshi, P. C., and Mansingh, A., Appl. Phys. Lett. 59, 3547 (1991).CrossRefGoogle Scholar
Yi, G., Wu, Z., and Saver, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
Tohge, N., Takahashi, S. and Minami, T., J. Amer. Ceram. Soc. 74, 67 (1991).Google Scholar
Zuleg, R. and Dey, S. K., Appl. Phys. Lett. 60, 2487 (1992).Google Scholar
Phule, P. P. and Risbud, S. H., Mater. Res. Soc. Symp. Proc. 121, 275 (1991).CrossRefGoogle Scholar
Ostertag, R., Rinn, G., Tunker, G., and Schmidt, H., Brit. Ceram. Proc. 41, 11 (1989).Google Scholar
Cheput, F., and Oilot, L. P. B, ibid., 41, 21 (1989).Google Scholar
Liu, W., and Zhu, W., Matei. Lett., 46, 239 (2000)CrossRefGoogle Scholar
Lee, S. Y., Hong, Y. W., and Yoo, S. I., Electron. Mater. Lett., 7, 287 (2011).CrossRefGoogle Scholar