Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T07:47:33.054Z Has data issue: false hasContentIssue false

Improved Ambipolar Diffusion Length in a-Si1-xGex:H Alloys for Multi-Junction Solar Cells

Published online by Cambridge University Press:  15 February 2011

J. Fölsch
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
F. Finger
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
T. Kulessa
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
F. Siebke
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
W. Beyer
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
H. Wagner
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jölich, D-52425 Jölich, Germany
Get access

Abstract

To prepare hydrogenated amorphous silicon-germanium alloys as low gap material for multi-junction solar cells in plasma enhanced chemical vapour deposition, the well established concept of strong dilution of the process gases with hydrogen has been used. Two different regimes of alloying were found: for low Ge content (x < 0.40) we observe material with low defect density, small Urbach energy and high values of the ambipolar diffusion length. In the regime of high Ge content (x > 0.40) the defect densities and Urbach energies are high and the values of the ambipolar diffusion length low. The transition is accompanied by the appearance of a low-temperature peak in hydrogen effusion experiments indicating a void rich film structure. Material from just above and below the transition zone is used in pin solar cells leading to a much enhanced red response compared with a-Si:H cells. The differences seen in the material quality are mirrored in the solar cell properties. By carefully adjusting the active layer thickness material with low diffusion length shows also reasonable solar cell performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paul, W., Paul, D.K., von Roedern, B., Blake, J., Oguz, S., Phys. Rev. Lett. 46, 1016 (1981).Google Scholar
2. Jones, S.J., Chen, Y., Williamson, D.L., Zedlitz, R., Bauer, G., Appl. Phys. Lett. 62, 3267 (1993).Google Scholar
3. Aljishi, S., Smith, Z.E., Wagner, S. in: Amorphous Silicon and Related Materials, Vol. 1, ed. Fritzsche, H., World Scientific, Singapore (1989), p. 887.Google Scholar
4. Nebel, C.E., Weller, H.C., Bauer, G.H., Mat. Res. Soc. Symp. Proc. 118, 507 (1988).Google Scholar
5. Nebel, C.E., Weller, H.C., Bauer, G.H., Mat. Res. Soc. Symp. Proc. 192, 151 (1990).Google Scholar
6. Matsuda, A., Tanaka, K., J. Non-Cryst. Solids 97&98, 1367 (1987).Google Scholar
7. Nozawa, K., Yamaguchi, Y., Hanna, J., Shimizu, I., J. Non-Cryst. Solids 59&60, 533 (1983).Google Scholar
8. Kolodzey, J., Slobodin, S., Aljishi, S., Quinlan, S., Schwarz, R., Shen, D.S., Fauchet, P. M., Wagner, S., J. Non-Cryst. Solids 77&78, 897 (1985).Google Scholar
9. Weiler, H.C., Paasche, S.M., Nebel, C.E., Bauer, G.H., Conf. Ree. 19 IEEE Photovoltaic Conf., IEEE New York (1987), p. 872.Google Scholar
10. Guha, S., Payson, J.S., Agarwal, S.C., Ovshinsky, S.R., J. Non-Cryst. Solids 97&98, 1455 (1987).Google Scholar
11. Ritter, D., Weiser, K., Zeldov, E., J. Appl. Phys. 62, 4563 (1987).Google Scholar
12. Luft, W., Tsuo, Y.S. in: Hydrogenated Amorphous Silicon Alloy deposition processes, Marcel Dekker Inc., New York, Basel, Hong Kong, (1993).Google Scholar
13. Pierz, K., Hilgenberg, B., Mell, H. and Weiser, G., J. Non-Cryst. Sol. 97&98, 63 (1987).Google Scholar
14. Bauer, G.H., Nebel, C.E. and Mohring, H.-D., Mat. Res. Soc. Symp. Proc. 118, 679 (1988).Google Scholar
15. Bernhard, N., Bauer, G.H., Mat. Res. Soc. Symp. Proc. 336, 625 (1994).Google Scholar
16. Yang, J., Banerjee, A., Glatfelter, T., Hoffmann, K., Xu, X., Guha, S., 1st World Conf. on PV Energy Conversion, Hawaii, Dec. 5–9, 1994.Google Scholar
17. Beyer, W. in: Tetrahedally-Bonded Amorphous Semiconductors, eds. Adler, D. and Fritzsche, H., Plenum Press, New York (1995), p. 129.Google Scholar
18. Mahan, A. H., Raboisson, P., Tsu, R., Appl. Phys. Lett. 50, 335 (1987).Google Scholar