Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:16:51.909Z Has data issue: false hasContentIssue false

Implant Damage in AlGaAs Based Superlattices and Alloys at 77K

Published online by Cambridge University Press:  21 February 2011

E. A. Dobisz
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
H. Dietrich
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
A. W. McCormick
Affiliation:
Universal Energy Systems, 4401 Dayton-Xenia Rd., Dayton, Ohio 45432
J. P. Harbison
Affiliation:
Bellcore, Red Bank, NJ 07701
Get access

Abstract

Previously, it was shown that superlattices implanted with Si at 77K, exhibited more extensive damage and uniform compositional mixing upon subsequent annealing than samples implanted at room temperature.[l,2] The current work focuses on the damage in samples implanted with Si at 77K. The study shows that for a given dose, the amount of damage depends upon the layer thickness and the composition. Specimens of bulk GaAs, Al 3Ga. 7As, 7.5 nm GaAs -10 nm Al. 3Ga. 7As superlattice (SL1), 5.5 nm GaAs −3.5 nm AlAs superlattice (SL2), and 8.0 nm GaAs −8.0 nm AlAs superlat-tice (SL3) were implanted at 77K with 100 KeV Si, with doses ranging from 3 × 1013 cm−2 to 1 × 1015 cm−2. The samples were examined by ion channelling and cross sectional transmission electron microscopy (TEM). At 77K and a dose of 1 × 1014 cm−2, the GaAs and SLi showed an amorphous layer, while no damage peak was observed in SL2. The 77K amorphization thresholds of the Al 3Ga. 7As alloy, SL2, and SL3 were 2.5 × 1014 cm−2, 4 × 1014 cm−2, and 1 × 1015 cm−2 respectively. The sharpness of the amorphization threshold varied with the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dobisz, E. A., Tell, B., Craighead, H. G., Schwarz, S. A., Tamargo, M. C., and Harbison, J. P., Mat. Res. Soc. Symp. Proc., 77 423 (1987).Google Scholar
2. Dobisz, E. A., Tell, B., Craighead, H. G., and Tamargo, M. C., J. Appl. Phys., 60, 4150 (1986).Google Scholar
3. Dobisz, E. A., Craighead, H. G., Schwarz, S. A., Lin, P. S. D., Kash, K., Schiavone, L. M., Scherer, A., Harbison, J. P., SPIE, 797, 194 (1987).Google Scholar
4. Laidig, W. D., Holonyak, N., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., Bardeen, J., Appl. Phys. Lett.,38, 776 (1981).Google Scholar
5. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Koza, M., Yoon, H. W., Mei, P., Arakawa, Y., Yariv, A., Appl. Phys. Lett.,49 701 (1986).Google Scholar
6. De Cooman, B. C., Carter, C. B., Ralston, J., Wicks, G. W., Eastman, L. F., Mat. Res. Soc. Symp. Proc.,77, (1987).Google Scholar
7. Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A. C., English, J. H., Appl. Phys. Lett., 49 1275 (1986).Google Scholar
8. Kash, K., Tell, B., Grabbe, P., Dobisz, E. A., Craighead, H. G., J. Appl. Phys., 63, 192 (1988).Google Scholar
9. Williams, J. S. and Austin, M. W., Appl. Phys. Lett., 36, 994 (1980).Google Scholar
10. Matsui, K., Takatani, S., Fukunaga, T., Narusawa, T., Bamba, Y., and Nakashima, H., Jpn. J. Appl. Phys.,25, L391 (1986).Google Scholar
11. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, Inc. New York, 1985).Google Scholar
12. Hamdi, A. H., Tandom, J. L., Nicolet, N. -A., Nucl. Instrum. & Methods, B10–11, 588 (1985).Google Scholar