Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T16:14:12.707Z Has data issue: false hasContentIssue false

Impedance Spectroscopy and the Role of Admixtures in the Hydration of Portland Cement Pastes

Published online by Cambridge University Press:  15 February 2011

Bruce J. Christensen
Affiliation:
Department of Materials Science and Engineering, Center for Advanced Cement-Based Materials, Northwestern University, Evanston, IL 60208.
Thomas O. Mason
Affiliation:
Department of Materials Science and Engineering, Center for Advanced Cement-Based Materials, Northwestern University, Evanston, IL 60208.
Hamlin M. Jennings
Affiliation:
Department of Civil Engineering, Center for Advanced Cement-Based Materials, Northwestern University, Evanston, IL 60208.
Get access

Abstract

Measurements of the bulk electrical properties of cement pastes were made using impedance spectroscopy (IS) and are useful for studying hydration. Normalization of these quantities by dividing out changes in the pore fluid reveals information pertinent to the microstructural development of these materials. In this study, observations are made on the influence of accelerators, retarders and silica fume (SF) on pastes of white and ordinary portland cements (OPC). All systems show variations in the normalized electrical properties at the same degree of hydration, as compared to a control. Changes in the microstructure that are implied by these measurements are consistent with the observations of others.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tamás, F.D., Farkas, E., Vörös, M. and Roy, D.M., Cem. Concr. Res. 17, 340 (1987).10.1016/0008-8846(87)90116-5Google Scholar
[2] Perez-Pena, M., Roy, D.M., and Tamás, F.D., J. Mater. Res. 4(1), 215222 (1989).10.1557/JMR.1989.0215Google Scholar
[3] Tamás, F.D., Cem. Concr. Res., 12(1), 115120 (1982).10.1016/0008-8846(82)90106-5CrossRefGoogle Scholar
[4] McCarter, W.J. and Afshar, A.B., J. Mat. Sci. Lett. 4, 405 (1985).10.1007/BF00719730Google Scholar
[5] Olp, K., Otto, G., Chew, W.C., and Young, J.F., J. Mat. Sci. 26(11), 2978 (1991).10.1007/BF01124831Google Scholar
[6] Leigh, D.W., M.S. Thesis, Univ. of Illinois-Urbana, 1988.Google Scholar
[7] Leigh, D.W., Payne, D.A., and Young, J.F., Adv. in Ceramics 26, 255 (1987).Google Scholar
[8] Perez-Pena, M., Roy, D.M., Bhalla, A.S., and Cross, L.E., Adv. in Ceramics 26, 279 (1987).Google Scholar
[9] Ref. 8, p. 287.Google Scholar
[10] Christensen, B.J., Mason, T.O., and Jennings, H.M., “Influence of Silica Fume on the Early Hydration of Portland Cements using Impedance Spectroscopy,” J. Am. Cer. Soc., in press.Google Scholar
[11] Feldman, R.F. and Cheng-Yi, H., Cem. Concr. Res. 15, 765 (1985).10.1016/0008-8846(85)90141-3CrossRefGoogle Scholar
[12] Manmohan, D. and Mehta, P.K., Cem. Concr. Aggr. 3(1), 6367 (1981).Google Scholar
[13] Wahed, M. G. Abd El and Hekal, E.E., J. Mat. Sci. Lett. 8, 875 (1989).10.1007/BF01729931CrossRefGoogle Scholar
[14] Hansson, I. L. H. and Hansson, C. M., Cem. Concr. Res. 15, 201 (1985).10.1016/0008-8846(85)90031-6CrossRefGoogle Scholar
[15] Tashiro, C., Ishida, H., and Shimamura, S., J. Mat. Sci. Lett. 6, 1379 (1987).10.1007/BF01689294Google Scholar
[16] Christensen, B.J., Mason, T.O., Jennings, H.M., Bentz, D.P., and Garboczi, E.J., “Experimental and Computer Simulation Results for the Electrical Conductivity of Portland Cement Pastes,” MRS Fall Mtg., Boston, MA, paper K4.3 (1991).10.1557/PROC-245-259CrossRefGoogle Scholar
[17] Mindess, S. and Young, J.F., Concrete (Prentice-Hall Inc., Englewood Cliffs, NJ, 1981), p. 103.Google Scholar
[18] Taylor, H.F.W., Cement Chemistry, (Academic Press, San Diego, CA., 1990), p. 246.Google Scholar
[19] Bentz, D.P. and Garboczi, E.J., Cem. Concr. Res. 21, 325 (1991).10.1016/0008-8846(91)90014-9Google Scholar
[20] McCarter, W.C. and Brosseau, R., Cem. Concr. Res. 20, 891 (1990).10.1016/0008-8846(90)90051-XGoogle Scholar
[21] Scuderi, C.A., Mason, T.O. and Jennings, H.M., J. Mat. Sci. 26, 349 (1991).10.1007/BF00576526Google Scholar
[22] Archie, G.E., Trans. AIMME 146, 54 (1942).10.2118/942054-GGoogle Scholar
[23] Pirson, S.J., Oil and Gas Journal 46(26) 7681 (1947).Google Scholar
[24] Diamond, S., Proc. of 3rd Annual SEM Symp., (ITT Res. Inst., Chicago, IL, Apr. 1970) p. 385.Google Scholar
[25] Powers, T.C., Copeland, L.E., and Mann, H.M., J. PCA Res. Dev. Lab. 1(2), 3848 (May 1959).Google Scholar
[26] Katz, A.J. and Thompson, A.H., Phys. Rev. B 34, 8179 (1986).10.1103/PhysRevB.34.8179Google Scholar
[27] Zhang, M.H. and Gjørv, O.E., Cem. Concr. Res. 21, 800 (1991).10.1016/0008-8846(91)90175-HGoogle Scholar
[28] Yogendran, V., Langan, B.W., and Ward, M.A., Cem. Concr. Res. 21, 691 (1991).10.1016/0008-8846(91)90164-DCrossRefGoogle Scholar
[29] Bentz, D.P. (private communication).Google Scholar