Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T04:31:32.463Z Has data issue: false hasContentIssue false

Impact of the Surrounding Network on the Si-O Bond-Breakage Energetics

Published online by Cambridge University Press:  31 January 2011

Stanislav Tyaginov
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Viktor Sverdlov
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Wolfgang Gös
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Austria
Philipp Scwaha
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Rene Heinzl
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Franz Stimpfl
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Tibor Grasser
Affiliation:
[email protected], Vienna University of Technology, Institute for Microelectronics, Vienna, Vienna, Austria
Get access

Abstract

We extend the McPherson Model for silicon-oxygen bond-breakage derived for a single SiO4 tetrahedron to capture the influence of the whole lattice. Several pair-wise potentials have been compared in the model including Mie-Grüneisen as well as diverse forms of TTAM/BKS. The contribution of the whole lattice substantially increases the activation energy for the Si-O bond rupture. The corresponding small transition rate of a non-distorted Si-O bond suggests that the interaction with the electric field alone can not be responsible for the bond-breakage and the contribution of other components such as energy delivered by particles and/or bond weakening is required.ü

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Saha, D., Varghese, D., and Mahapatra, S., IEEE Electron Dev. Lett. EDL-27, 585 (2006).Google Scholar
2 Mahapatra, S., Saha, D., Varghese, D., Kumar, P.B., IEEE TED. ED-53, 1583 (2006).Google Scholar
3 Yang, T.-Ch., Saraswat, C., IEEE Trans. Electron Dev. ED-47, 746 (2000).Google Scholar
4 Ristis, G.S., J. Phys. D: Appl. Phys. 41, pap. No. 023001 (2008).Google Scholar
5 McPherson, J.W., J. Appl. Phys. 99, pap. No. 083501 (2006).Google Scholar
6 McPherson, J.W., 45th Annual Intern. Reliab. Phys. Symp., 209 (2007).Google Scholar
7 Alam, M., Bude, J., A, Ghetti, 38th Annual Intern. Reliab. Phys. Symp., p. 21 (2000).Google Scholar
8 DiMaria, D.J., J. Appl. Phys. 87, 8707 (2000).Google Scholar
9 DiMaria, D.J., Stathis, J.H., J. Appl. Phys., 89, 5015 (2001).Google Scholar
10 Ghetti, A., “Gate oxide reliability”, Review: http://cobweb.ecn.purdue.edu/̃ee650/downloads/ghetti-review-of-TDDB.pdfGoogle Scholar
11 Tsuneyuki, S., Tsukada, M., Aoki, H., Matsui, Y., Phys. Rev. Lett. 61, 869 (1998).Google Scholar
12 Beest, B.W.H. van, Kramer, G.J., Santen, R.A. van, Phys. Rev. Lett. 64, 1955 (1998).Google Scholar
13 Essmann, U., Perera, L., Berkowitz, L., Darden, T., Lee, H., Pedersen, L.G., J. Chem. Phys. 103, 8577 (1995).Google Scholar
14 Al-Derzi, A.R., Gory, M.G., Runge, K., Trickey, S.B., J. Phys. Chem. A 108, 11679 (2004).Google Scholar
15 Zhu, W., Runge, K., Trickey, S.B., J. Comp.-Aid. Mater. Design 13, 75 (2006).Google Scholar
16 , Tandia, Sarrabayrouse, G., Martinez, A., Thin Solid Films 296, 122 (1997).Google Scholar
17 Jollet, F., Noguera, C., Phys. Stat. Sol. (b) 179, 473 (1993).Google Scholar
18 Munetoh, Sh., Motooka, T., Moriguchi, K., Shintani, A., Comput. Mat. Sci. 39, 334 (2007).Google Scholar
19 Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, 3nd edition, W&S, NY, 2006.Google Scholar