Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:40:18.856Z Has data issue: false hasContentIssue false

Impact of Rapid Thermal Annealing on Thermoelectric Properties of Bulk Nanostructured Zinc Oxide

Published online by Cambridge University Press:  07 August 2013

Markus Engenhorst
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Devendraprakash Gautam
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Carolin Schilling
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Markus Winterer
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Gabi Schierning
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Roland Schmechel
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Get access

Abstract

In search for non-toxic thermoelectric materials that are stable in air at elevated temperatures, zinc oxide has been shown to be one of only few efficient n-type oxidic materials. Our bottom-up approach starts with very small (<10 nm) Al-doped ZnO nanoparticles prepared from organometallic precursors by chemical vapor synthesis using nominal doping concentrations of 2 at% and 8 at%. In order to obtain bulk nanostructured solids, the powders were compacted in a current-activated pressure-assisted densification process. Rapid thermal annealing was studied systematically as a means of further dopant activation. The thermoelectric properties are evaluated with regard to charge carrier concentration and mobility. A Jonker-type analysis reveals the potential of our approach to achieve high power factors. In the present study, power factors larger than 4×10-4 Wm-1K-2 were measured at temperatures higher than 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohtaki, M., Tsubota, T., Eguchi, K. and Arai, H., J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
Ohtaki, M., Araki, K. and Yamamoto, K., J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
Jood, P., Mehta, R. J., Zhang, Y., Peleckis, G., Wang, X, Siegel, R. W., Borca-Tasciuc, T., Dou, S. X. and Ramanath, G., Nano Lett. 11, 4337 (2011).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E.S., Nature Materials 7, 105 (2008).CrossRefGoogle Scholar
Nielsch, K., Bachmann, J., Kimling, J. and Böttner, H., Adv. Energy Mater. 1, 713 (2011).CrossRefGoogle Scholar
Ali, M., Friedenberger, N., Spasova, M. and Winterer, M., Chem. Vap. Dep. 15, 192 (2009).CrossRefGoogle Scholar
Shirouzu, K., Ohkusa, T., Hotta, M., Enomoto, N. and Hojo, J., J. Ceram. Soc. Jpn. 115, 254 (2007).CrossRefGoogle Scholar
Bérardan, D., Byl, C. and Dragoe, N., J. Am. Ceram. Soc. 93, 2352 (2010).CrossRefGoogle Scholar
Tsubota, T., Ohtaki, M., Eguchi, K. and Arai, H., J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
Hartner, S., Ali, M., Schulz, C., Winterer, M. and Wiggers, H., Nanotechnology 20, 445701 (2009).CrossRefGoogle Scholar
Sze, S. M. and Ng, K. K., Physics of semiconductor devices, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2007), p. 789.Google Scholar
Schierning, G., Theissmann, R., Stein, N., Petermann, N., Becker, A., Engenhorst, M., Kessler, V., Geller, M., Beckel, A., Wiggers, H. and Schmechel, R., J. Appl. Phys. 110, 113515 (2011).CrossRefGoogle Scholar
Jonker, G. H., Philips Res. Rep. 23, 131 (1968).Google Scholar
Han, J., Mantas, P. Q. and Senos, A. M. R., J. Mater. Res. 16, 459 (2001).CrossRefGoogle Scholar