Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:33:08.055Z Has data issue: false hasContentIssue false

Immittance Data-Handling/Analyzing Criteria For Heterogeneous Systems

Published online by Cambridge University Press:  10 February 2011

Mohammad A. Alim*
Affiliation:
Hubbell Incorporated, The Ohio Brass Company 8711 Wadsworth Road, Wadsworth, Ohio 44281
Get access

Abstract

The factors determining electrical characteristics using immittance data of heterogeneous systems are not identical to those established with devices based on single-crystal/single-junction (SCSJ) technology. The ”state of normalization” using ”physical geometrical factors” of the asmeasured immittance quantities does not provide a SCSJ-like straightforward interpretation of simultaneously operative phenomena. The normalization procedure can the vitiate identity of each phenomenon occurring within the series-parallel microstructural network of electrical paths. The advantage of using the as-measured immittance data in delineating simultaneously operative phenomena is emphasized. An approach to data-handling/analyzing is proposed considering the limitations and conditions of utilizing the as-measured immittance data. The ”state of normalization” using ”physical geometrical factors” can only be executed for a specific type of phenomenon when isolated from the total electrical behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alim, M. A.; Act. Pass. Elect. Comp., 19, xxx (1996).Google Scholar
2. (a) L. B. Younkman; Ph.D. Dissertation, The Ohio State University, Columbus (June 1995). (b) Azad, A. M., Akbar, S. A., Younkman, L. B., and Alim, M. A.; J. Am. Ceram. Soc., 77, 3145 (1994). (c) A. M. Azad, L. B. Younkman, S. A. Akbar, and M. A. Alim; J. Am. Ceram. Soc., 77, 481 (1994).Google Scholar
3. (a) Alim, M. A.; J. Appl. Phys., 78, 47764779 (1995). (b) M. A. Alim, M. A. Seitz, and R. W. Hirthe; J. Appl. Phys., 63, 2337 (1988).Google Scholar
4. (a) Alim, M. A.; Act. Pass. Electron. Comp., 17, 99 (1994). (b) M. A. Alim; Act. Pass. Electron. Comp., 17, 57 (1994). (c) M. A. Alim; J. Am. Ceram. Soc., 72, 28 (1989). (d) L. C. Sletson, M. E. Potter, and M. A. Alim; J. Am. Ceram. Soc., 71, 909 (1988).Google Scholar
5. (a) Alim, M. A.; J. Am. Ceram. Soc., 74, 1757 (1991). (b) J. H. Lee, S. J. Park, and K. Hirota; J. Am. Ceram. Soc., 74, 1759 (1991). (c) J. H. Lee, S. J. Park, and K. Hirota; J. Am. Ceram. Soc., 73, 2771 (1990).Google Scholar
6. Alim, M. A.; J. Appl. Phys., 74, 5850 (1993).Google Scholar
7. (a) Wang, C. C., Patton, V. D., Akbar, S. A., and Alim, M. A.; J. Mat. Res., 11, 422 (1996). (b) J. J. Ackman and M. A. Seitz; CRC Crit. Rev. Biomed. Engr., 11, 281 (1984). (c) A. K. Jonscher; Dielectric Relaxation in Solids, Chelsea Dielectrics, London (1983). (d) H. J. de Bruin and S. P. S. Badwal; J. Aust. Ceram. Soc., 14, 20 (1978). (e) I. M. Hodge, M. D. Ingram, and A. R. West; J. Electroanal. Chem., 58, 429 (1975). (f) F. A. Grant; J. Appl. Phys., 29, 76 (1958).Google Scholar