Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:52:50.443Z Has data issue: false hasContentIssue false

Imaging Schottky Barriers at Carbon Nanotube Contacts

Published online by Cambridge University Press:  15 March 2011

Marcus Freitag
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
A. T. Johnson
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

We use scanning gate microscopy to precisely locate the gating response in single-wall nanotube devices. Junctions of metallic and semiconducting nanotubes show a dramatic increase in transport current when they are electrostatically doped with holes at the junction. We ascribe this behavior to the turn-on of a reverse biased Schottky barrier. A similar effect is seen in field-effect transistors made from an individual semiconducting single-wall carbon nanotube. In this case, there are two Schottky barriers at the metal contacts, one of which is forward, and one of which is reverse biased. The gating action is only observed at the reverse biased Schottky barrier at the positive electrode. By positioning the gate near one of the contacts, we convert the nanotube field-effect transistor into a rectifying nanotube diode. These experiments both clarify the gating mechanism for nanotube devices and indicate a strategy for diode fabrication based on controlled placement of acceptor impurities at a nanotube field-effect transistor.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerlings, L. J., and Dekker, C., Nature (London) 386, 474 (1997).Google Scholar
2. Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature (London) 393, 49 (1998).Google Scholar
3. Antonov, R. D. and Johnson, A. T., Phys. Rev. Lett. 83, 3274 (1999).Google Scholar
4. Zhou, C., Kong, J., and Dai, H., Science 290, 1552 (2000).Google Scholar
5. Fuhrer, M. S., Nygard, J., Shih, L., Forero, M., Yoon, Y. G., Mazzoni, M. S. C., Choi, H. J., Ihm, J., Louie, S. G., Zettl, A., and McEuen, P. L., Science 288, 494 (2000).Google Scholar
6. Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A., Science 287, 1801 (2000).Google Scholar
7. Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., and Smalley, R. E., Nature (London) 402, 273 (1999).Google Scholar
8. Bockrath, M., Hone, J., Zettl, A., McEuen, P. L., Rinzler, A. G., and Smalley, R. E., Phys. Rev. B 61, R10606 (2000).Google Scholar
9. Lee, R. S., Kim, H. J., Fischer, J. E., Lefebvre, J., Radosavljevic, M., Hone, J., and Johnson, A. T., Phys. Rev. B 61, 4526 (2000).Google Scholar
10. Leonard, F. and Tersoff, J., Phys. Rev. Lett. 83, 5174 (1999).Google Scholar
11. Freitag, M., Radosavljevic, M., Zhou, Y., Johnson, A. T., and Smith, W. F., Appl. Phys. Lett. 79, 3326 (2001).Google Scholar
12. Freitag, M., Radosavljevic, M., Clauss, W., and Johnson, A. T., Phys. Rev. B 62, R2307 (2000).Google Scholar
13. Tans, S. J. and Dekker, C., Nature (London) 404, 834 (2000).Google Scholar
14. Bachtold, A., Fuhrer, M. S., Plyasunov, S., Forero, M., Anderson, E. H., Zettl, A., and McEuen, P. L., Phys. Rev. Lett. 84, 6082 (2000).Google Scholar
15. Bockrath, M., Liang, W., Bozovic, D., Hafner, J. H., Lieber, C. M., Tinkham, M., and Park, H., Science 291, 283 (2001).Google Scholar
16. Hafner, J. H., Cheung, C. L., and Lieber, C. M., J. Am. Chem. Soc. 121, 9750 (1999).Google Scholar
17. Clauss, W., Zhang, J., Bergeron, D. J., and Johnson, A. T., J. Vac. Sci. Technol. 17, 1309 (1999).Google Scholar
18. Odintsov, A. A., Phys. Rev. Lett. 85, 150 (2000).Google Scholar