Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:25:55.833Z Has data issue: false hasContentIssue false

Imaging Cellular and Viral Materials with Small Cantilevers Developed for High Speed Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

Georg Fantner
Affiliation:
[email protected], Massachusetts Institute of Technology, Materials Science, 77 Massachusetts ave, building 16-244, cambridge, MA, 02139, United States, 617 324 3400
Tzvetan Ivanov
Affiliation:
[email protected], TU-Ilmenau, Institute for Mikro- and Nanoelektronics, Ilmenau, N/A, Germany
Katerina Ivanova
Affiliation:
[email protected], TU-Ilmenau, Institute for Mikro- and Nanoelektronics, Ilmenau, N/A, Germany
David Gray
Affiliation:
[email protected], Massachusetts Institute of Technology, Department for Materials Science and Engineering, cambridge, MA, 02139, United States
Ivo W Rangelow
Affiliation:
[email protected], TU-Ilmenau, Institute for Mikro- and Nanoelektronics, Ilmenau, N/A, Germany
Paul K Hansma
Affiliation:
[email protected], University of California Santa Barbara, Department of Physics, Santa Barbara, CA, 93117, United States
Angela M Belcher
Affiliation:
[email protected], Massachusetts Institute of Technology, Department for Materials Science and Engineering, cambridge, MA, 02139, United States
Get access

Abstract

High speed atomic force microscopy (AFM) holds the promise of investigating dynamic systems in real time with single molecule resolution. With the big push towards understanding more complex systems such as cell mechanics or cell-cell and cell-virus interactions, a tool is required that can extract information about these processes in real time in a physiological environment. Atomic force microscopy has been successfully used for investigations of many biological systems and materials in real life conditions, but taking AFM images takes too long to follow many biologically relevant processes. Therefore, attempts have been made to develop high speed AFM by reengineering all the components of an AFM system and much progress has been made. To be useful for investigations of biological systems however, it is often essential to keep imaging forces low in order to get good image quality and not to damage the sample. In this paper we will discuss new small AFM cantilevers we've developed to combine high resonance frequencies for faster imaging with low spring constants for gentle imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barrett, R. C. and Quate, C. F., High-speed, large-scale imaging with the atomic force microscope. Journal of Vacuum Science & Technology B, 1991. 9 (2): p. 302306.Google Scholar
2. Horber, J. K. H., Haberle, W., Ohnesorge, F., Binnig, G., Liebich, H. G., Czerny, C. P., Mahnel, H., and Mayr, A., Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microscopy, 1992. 6 (4): p. 919930.Google Scholar
3. Ivanov, T., Gotszalk, T., Sulzbach, T., Chakarov, I., and Rangelow, I. W., Afm cantilever with ultra-thin transistor-channel piezoresistor: Quantum confinement. Microelectronic Engineering, 2003. 67–8: p. 534541.Google Scholar
4. Linnemann, R., Gotszalk, T., Hadjiiski, L., and Rangelow, I. W., Characterization of a cantilever with an integrated deflection sensor. Thin Solid Films, 1995. 264 (2): p. 159164.Google Scholar
5. Manalis, S. R., Minne, S. C., Atalar, A., and Quate, C. F., High-speed atomic force microscopy using an integrated actuator and optical lever detection. Review of Scientific Instruments, 1996. 67 (9): p. 32943297.Google Scholar
6. Pedrak, R., Ivanov, T., Ivanova, K., Gotszalk, T., Abedinov, N., Rangelow, I. W., Edinger, K., Tomerov, E., Schenkel, T., and Hudek, P., Micromachined atomic force microscopy sensor with integrated piezoresistive, sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes. Journal of Vacuum Science & Technology B, 2003. 21 (6): p. 31023107.Google Scholar
7. Ookubo, N. and Yumoto, S., Rapid surface topography using a tapping mode atomic force microscope. Applied Physics Letters, 1999. 74 (15): p. 21492151.Google Scholar
8. Wong, T. M. H. and Welland, M. E., A digital-control system for scanning tunneling microscopy and atomic force microscopy. Measurement Science & Technology, 1993. 4 (3): p. 270280.Google Scholar
9. Yumoto, S. and Ookubo, N., Fast imaging method combining cantilever and feedback signals in contact-mode atomic force microscopy. Applied Physics a-Materials Science & Processing, 1999. 69 (1): p. 5154.Google Scholar
10. Uchihashi, T., Kodera, N., Itoh, H., Yamashita, H., and Ando, T., Feed-forward compensation for high-speed atomic force microscopy imaging of biomolecules. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45 (3B): p. 19041908.Google Scholar
11. Tien, S., Zou, Q. Z., and Devasia, S., Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed afm operation. Ieee Transactions on Control Systems Technology, 2005. 13 (6): p. 921931.Google Scholar
12. Schitter, G., Menold, P., Knapp, H. F., Allgower, F., and Stemmer, A., High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 2001. 72 (8): p. 33203327.Google Scholar
13. Sulchek, T., Hsieh, R., Adams, J. D., Yaralioglu, G. G., Minne, S. C., Quate, C. F., Cleveland, J. P., Atalar, A., and Adderton, D. M., High-speed tapping mode imaging with active q control for atomic force microscopy. Applied Physics Letters, 2000. 76 (11): p. 14731475.Google Scholar
14. Egawa, A., Chiba, N., Homma, K., Chinone, K., and Muramatsu, H., High-speed scanning by dual feedback control in snom afm. Journal of Microscopy-Oxford, 1999. 194: p. 325328.Google Scholar
15. Fantner, G. E., Schitter, G., Kindt, J. H., Ivanov, T., Ivanova, K., Patel, R., Holten-Andersen, N., Adams, J., Thurner, P.J., Rangelow, I. W., and Hansma, P. K., Components for high speed atomic force microscopy. Ultramicroscopy, 2006. 106 (8-9): p. 881887.Google Scholar
16. Kim, D., Kang, D., Shim, J., Song, I., and Gweon, D., Optimal design of a flexure hinge-based xyz atomic force microscopy scanner for minimizing abbe errors. Review of Scientific Instruments, 2005. 76 (7): p. -.Google Scholar
17. Kindt, J. H., Fantner, G. E., Cutroni, J. A., and Hansma, P. K., Rigid design of fast scanning probe microscopes using finite element analysis. Ultramicroscopy, 2004. 100 (3-4): p. 259265.Google Scholar
18. Kwon, J., Hong, J., Kim, Y. S., Lee, D. Y., Lee, K., Lee, S. M., and Park, S. I., Atomic force microscope with improved scan accuracy, scan speed, and optical vision. Review of Scientific Instruments, 2003. 74 (10): p. 43784383.Google Scholar
19. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A., A high-speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98 (22): p. 1246812472.Google Scholar
20. Picco, L. M., Bozec, L., Ulcinas, A., Engledew, D. J., Antognozzi, M., Horton, M. A., and Miles, M. J., Breaking the speed limit with atomic force microscopy. Nanotechnology, 2007. 18 (4): p. -.Google Scholar
21. Fantner, G. E., Hegarty, P., Kindt, J. H., Schitter, G., Cidade, G. A. G., and Hansma, P. K., Data acquisition system for high speed atomic force microscopy. Review of Scientific Instruments, 2005. 76 (2): p. -.Google Scholar
22. Humphris, A. D. L., Hobbs, J. K., and Miles, M. J., Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Applied Physics Letters, 2003. 83 (1): p. 68.Google Scholar
23. Degertekin, F. L., Onaran, A. G., Balantekin, M., Lee, W., Hall, N. A., and Quate, C. F., Sensor for direct measurement of interaction forces in probe microscopy. Applied Physics Letters, 2005. 87 (21): p. -.Google Scholar
24. Yamashita, H., Kodera, N., Miyagi, A., Uchihashi, T., Yamamoto, D., and Ando, T., Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Review of Scientific Instruments, 2007. 78 (8).Google Scholar
25. Hansma, P. K., Schitter, G., Fantner, G. E., and Prater, C., Applied physics - high-speed atomic force microscopy. Science, 2006. 314 (5799): p. 601602.Google Scholar
26. Ando, T., Kodera, N., Maruyama, D., Takai, E., Saito, K., and Toda, A., A high-speed atomic force microscope for studying biological macromolecules in action. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41 (7B): p. 48514856.Google Scholar
27. Chand, A., Viani, M. B., Schaffer, T. E., and Hansma, P. K., Microfabricated small metal cantilevers with silicon tip for atomic force microscopy. Journal of Microelectromechanical Systems, 2000. 9 (1): p. 112116.Google Scholar
28. Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., and Hansma, P. K., Probing protein-protein interactions in real time. Nature Structural Biology, 2000. 7 (8): p. 644647.Google Scholar
29. Viani, M. B., Schaffer, T. E., Chand, A., Rief, M., Gaub, H. E., and Hansma, P. K., Small cantilevers for force spectroscopy of single molecules. Journal of Applied Physics, 1999. 86 (4): p. 22582262.Google Scholar
30. Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., Richter, M., Rief, M., Gaub, H. E., Plaxco, K. W., Cleland, A. N., Hansma, H. G., and Hansma, P. K., Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Review of Scientific Instruments, 1999. 70 (11): p. 43004303.Google Scholar
31. Ohler, B., Cantilever spring constant calibration using laser doppler vibrometry. Review of Scientific Instruments, 2007. 78 (6): p. -.Google Scholar
32. Kindt, J. H., Fantner, G. E., Thompson, J. B., and Hansma, P. K., Automated wafer-scale fabrication of electron beam deposited tips for atomic force microscopes using pattern recognition. Nanotechnology, 2004. 15 (9): p. 11311134.Google Scholar