Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:01:54.120Z Has data issue: false hasContentIssue false

A III-nitride Layered Barrier Structure for Hyperspectral Imaging Applications

Published online by Cambridge University Press:  31 January 2011

Douglas Bell
Affiliation:
[email protected], Jet Propulsion Laboratory, M/S 302-231, Pasadena, California, United States
Neeraj Tripathi
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
James Grandusky
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
Vibhu Jindal
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
Fatemeh Shahedipour-Sandvik
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
Get access

Abstract

We report on a novel photodetector structure based on III-nitride materials. A layered configuration is used to create a barrier with voltage-tunable height. The barrier is used as a filter on photoexcited holes and electrons, and could form the basis for a dynamically tunable pixel in a hyperspectral imaging array. This would eliminate the need for external gratings and filters used in conventional hyperspectral instruments; in addition, the tunability of pixels allows decrease of the array dimension by one. The III-nitride materials family is a good candidate for this device, combining large band offsets with the ability for epitaxial growth. We have demonstrated the feasibility of using III-nitride materials to fabricate layered tunnel barriers, and have demonstrated tunability of photodetection using these structures. External quantum efficiencies of > 12% have been achieved with prototype devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fischer, A.J. Allerman, A.A. Crawford, M.H. K.Bogart, H.A. Lee, S.R. Kapler, R.J. Chow, W.W. Kurtz, S.R. Fullmer, K.W. Figiel, J.J. Appl. Phys. Lett. 84, 3394(2004).Google Scholar
2 Ramaiah, K.S. Su, Y.K. Chang, S.J. Kerr, B. Liu, H.P. Chen, I.G. Appl. Phys. Lett. 84, 3307(2004).Google Scholar
3 Zhang, G.Y. Yang, Z.J. Tong, Y.Z. Qin, Z.X. Hu, X.D. Chen, Z.Z. Ding, X.M. Lu, M. Li, Z.H. Yu, T.J. Zhang, L. Gan, Z.Z. Zhao, Y. Yang, C.F. Optical Materials 23, 183(2003).Google Scholar
4 Liu, C.H. Su, Y.K. Wen, T.C. Chang, S.J. Chang, R.W. J. Crystal Growth, 254, 336(2003).Google Scholar
5 Figge, S. Dennemarck, J. Alexe, G. Hommel, D. Mater. Res. Soc. Symp. Proc. 831, E11.36 (2005).Google Scholar
6 Potí, B., Todaro, M. T. Frassanito, M. C. Pomarico, A. Passaseo, A. Lomascolo, M. Cingolani, R. and Vittorio, M. De, Electron. Lett. 39, 1747(2003).Google Scholar
7 Fieger, M. Dikme, Y. Jessen, F. Kalish, H. Noculak, A. Szymakowski, A. Gemmern, P. Faure, B. Richtarch, C. Letertre, F. Heuken, M. and Jensen, R. H. Phys. Stat. Sol. (c) 2, 2607(2005).Google Scholar
8 Pearlman, J. S. Barry, P. S. Segal, C. C. Shepanski, J. Beiso, D. and Carman, S. L. IEEE Trans. Geosci. Rem. Sens. 41, 1160(2003).Google Scholar
9 Marion, R. Michel, R. and Faye, C. IEEE Trans. Geosci. Rem. Sens. 42, 854(2004).Google Scholar
10 Likharev, K. K. Appl. Phys. Lett. 73, 2137(1998).Google Scholar
11 Casperson, J.D. Bell, L.D. and Atwater, H.A. J. Appl. Phys. 92, 261(2002).Google Scholar
12 Fujii, T. Shimomoto, K. Ohba, R. Toyoshima, Y. Horiba, K. Ohta, J. Fujioka, H. Oshima, M. Ueda, S. Yoshikawa, H. and Kobayashi, Keisuke, Applied Physics Express 2, 011002(2009).Google Scholar
13 Tripathi, N. Grandusky, J. R. Jindal, V. Shahedipour-Sandvik, F., and Bell, L. D. Appl. Phys. Lett. 90, 231103(2007).Google Scholar
14 Martin, G. Botchkarev, A. Rockett, A. and Morkoc, H. Appl. Phys. Lett. 68, 2541(1996).Google Scholar
15 Floro, A. Follstaedt, D. M. Provencio, P. Hearne, S. J. and Lee, S. R. J. Appl. Phys. 96, 7087(2004).Google Scholar
16 Lee, S. R. Koleske, D. D. Cross, K. C. Floro, J. A. Waldrip, K. E. Wise, A. T. and Mahajan, S. Appl. Phys. Lett. 85, 6164(2004).Google Scholar
17 Brewer, J. C. Walters, R. J. Bell, L. D. Farmer, D. B. Gordon, R. G. and Atwater, H. A. Appl. Phys. Lett. 85, 4133(2004).Google Scholar
18 Yu, L. S. Xing, Q. J. Qiao, D. Lau, S. S. Boutros, K. S. and Redwing, J. M. Appl. Phys. Lett. 73, 3917(1998).Google Scholar
19 Powell, R. J. J. Appl. Phys. 41, 2424(1970).Google Scholar
20 Bell, L. D. Smith, R. P. McDermott, B. T. Gertner, E. R. Pittman, R. Pierson, R. L. and Sullivan, G. J. Appl. Phys. Lett. 76, 1725(2000).Google Scholar
21 Kane, E. O. Phys. Rev. 127, 131(1962).Google Scholar