Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:53:07.746Z Has data issue: false hasContentIssue false

Identification of Chemical Growth Mechanisms in Amorphous Semiconductors

Published online by Cambridge University Press:  26 February 2011

Jeffrey A. Reimer
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, California 94720-9989
Michael J. Mccarthy
Affiliation:
Department of Food Science and Technology, University of California, Davis, California 95616
Karen K. Gleason
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, California 94720-9989
Philip W. Morrison Jr
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, California 94720-9989
Get access

Abstract

Experimental and computational results for three classes of experiments are reported. NMR measurements of phosphorus in amorphous hydrogenated silicon indicate that bonding rearrangements in bulk films are possible. Monte Carlo simulations of film growth demonstrate that surface diffusion is the dominant physical phenomenon responsible for the bulk hydrogen content of a-Si:H films. Finally, the gas phase chemistry of silane, as elucidated by our new “diesel” reactor, is considerably more complicated than many authors assume in models for thin films grown from silane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adler, David in, Semiconductors and Semimetals, Vol.21, edited by Pankove, J. (Academic Press, Orlando, 1984). 217 Google Scholar
2. Scott, Bruce A., Semiconductors and Semimetals, Vol.21, edited by Pankove, J. (Academic Press, Orlando, 1984). 217 Google Scholar
3. Wronski, C. R., Semiconductors and Semimetals, Vol.21, edited by Pankove, J. (Academic Press, Orlando, 1984). 217 Google Scholar
4. Reimer, J. A. and Duncan, T. M., Phys. Rev. B 27, 4895 (1983).Google Scholar
5. McCarthy, Michael J. and Reimer, Jeffery A., submitted to The Physical Review.Google Scholar
6. Street, R. A., Kakalios, J., and Hayes, T. M., Phys. Rev. B 34, 3030 (1986).Google Scholar
7. Gleason, K.K., Wang, K.S., Chen, M.K., Reimer, J.A., J. Appl. Phys. (in press).Google Scholar
8. Etherington, G., Wright, A. C., Wenzel, J. T., Dore, J. C., Carke, J. H., Sinclair, R. N., J. Noncryst. Solids, 48, 265, (1982).Google Scholar
9. Turban, G., Catherine, Y. and Grolleau, B., Thin Solid Films, 67, 309, (1980).Google Scholar
10. Tsai, C. C., Knights, J. C., Chang, G. and Wacker, B., J. Appl. Phys., 5, 2998 (1986).Google Scholar
11. Beers, A.M. and Bloem, J., Appl. Phys. Letts., 41, 153, (1982).Google Scholar
12. Scott, B.A. and Reimer, J. A., J. Appl. Phys. 54, 6853 (1983).Google Scholar
13. Gilland, E. R., Baddour, R. F., Perkinson, G.P. and Sladek, K. J., Ind. Eng. Chem., Fundam., 12, 95 (1974).Google Scholar
14. Knights, J. C., Jap. J. Appl. Phys., 18, 101 (1979).Google Scholar
15. John, P., Odeh, I. M., Thomas, M. J. K., Tricker, M. H., Wilson, J. I. B., England, J. B. A., and Newton, D., J. Phys. C, 14, 309 (1981).Google Scholar
16. Knights, J. C. and Lujan, R. A., App. Phys. Let., 35, 244 (1979).Google Scholar
17. Purnell, J. H. and Walsh, R., Proc. Royal Society A, 293, 543 (1966).Google Scholar
18. Bilenchi, R.,M., Musci, , and Murri, R., SPIE Laser Assisted Deposition, Etching, and Doping, 45, 61 (1984).Google Scholar
19. Flint, J. H., Meunier, M., Adler, D., and Haggerty, J. S., SPIE Laser Assisted Deposition, Etching, and Doping, 45, 66 (1984).Google Scholar
20. Deutsch, T. F., J. of Chemical Physics, 70, 1187 (1979).Google Scholar
21. Newman, C. G., O'Neal, H. E., Ring, M. A., Leska, F., and Shipley, N., Inter. J. Chemical Kinetics, 11, 1167 (1979).Google Scholar
22. White, R. T., Espino-Rios, R. L., Rogers, D. S., Ring, M. A., and O'Neal, H. E., Inter. J. Chemical Kinetics, 17, 1029 (1985).Google Scholar
23. Jeffers, R., Lewis, D., and Sarr, M., J. Phys. Chem., 77, 3037 (1973).Google Scholar
24. Chambers, T. C., and Kistiakowsky, G. B., J. Am. Chem. Soc., U, 399 (1934).Google Scholar
25. Scott, B. A., Olbricht, W. L., Meyerson, B. S., Reimer, J. A., and Wolford, D. J., J. Vac. Sci. Technol. A, 2, 450 (1984).Google Scholar