Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:04:51.149Z Has data issue: false hasContentIssue false

Identification of Chemical Compounds in Fly Ash by X-Ray Absorption Spectroscopy and Proton-Induced X-Ray and Gamma-Ray Emission Analyses

Published online by Cambridge University Press:  25 February 2011

N. W. Lytle
Affiliation:
Brigham Young University, Departments of Chemistry and Physics, Provo, UT 84602
D. J. Eatough
Affiliation:
Brigham Young University, Departments of Chemistry and Physics, Provo, UT 84602
L. D. Hansen
Affiliation:
Brigham Young University, Departments of Chemistry and Physics, Provo, UT 84602
M. W. Hill
Affiliation:
Brigham Young University, Departments of Chemistry and Physics, Provo, UT 84602
N. F. Mangelson
Affiliation:
Brigham Young University, Departments of Chemistry and Physics, Provo, UT 84602
F. W. Lytle
Affiliation:
The Boeing Company, Seattle, WA 98124
R. B. Greegor
Affiliation:
The Boeing Company, Seattle, WA 98124
Get access

Abstract

Proton-induced X-ray emmision and proton-induced gamma-ray emission analyses have been used to determine the elemental content of four oil fly ash samples collected from the flue line of an oil-fired power plant. X-ray absorption spectroscopy was used to characterize the vanadium and nickel compounds present in the fly ash. Vanadium was present primarily as VOSO4·3H2O and nickel was present as a mixture of NiSO4 and NiO.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fisher, G. L., Mcneill, K. L., Prentice, B. A. and McFarland, A. R., Environ. Health. Perspec. 51, 181186 (1983).Google Scholar
2. Wei, C., Raabe, O.G. and Kimble, B. J., Bull. Environ. Contam. Toxicol. 32, 179186 (1984).CrossRefGoogle Scholar
3. Wei, C., Bayati, M. A. Al, Culbertson, M. R., Rosenblatt, L. S. and Hansen, L. D., J. Toxicol. Environ. Health, 10, 673687 (1982).CrossRefGoogle Scholar
4. Eatough, D. J., Eatough, N. L., Hill, M. W., Mangelson, N. F., Ryder, J., Hansen, L.D., Meisenheimer, R. G. and Fisher, J. W., Atmos. Environ. 13, 489506 (1979).Google Scholar
5. Eatough, D. J., Christensen, J. J., Eatough, N. L., Hill, M. W., Major, T. D., Mangelson, N. F., Post, M. E., Ryder, J. F. and Hansen, L. D., Atmos. Environ. 16, 10011015 (1982).Google Scholar
6. Eatough, D. J., Richter, B. E., Eatough, N. L. and Hansen, L. D., Atmos. Environ. 15, 22412253 (1981).Google Scholar
7. Hansen, L. D., Silberman, D., Fisher, G. L. and Eatough, D. J., Environ. Sci. Tech. 18, 181186 (1984).CrossRefGoogle Scholar
8. Eatough, D. J., Arthur, R. J., Eatough, N. L., Hill, M. W., Mangelson, N. F., Richter, B. E. and Hansen, L. D., Environ. Sci. Technol. 18, 855859 (1984).Google Scholar
9. Eatough, D. J., Eatough, N. L., Hill, M. W., Mangelson, N. F. and Hansen, L. D., Environ. Sci. Technol. 18, 124126 (1984).CrossRefGoogle Scholar
10. Lytle, N. W., Hill, M. W., Lambert, K. A., Mangelson, N. F. and Kwak, S. S. W., Nucl. Instr. Meth. B10/11, 650652 (1985).Google Scholar
11. Anttilla, A., Hanninen, R. and Raisanen, J., J. Radioanal. Chem. 62, 293306 (1981).Google Scholar
12. Johansson, G. I., Malmquist, K. G., Bogard, M. and Akselsson, K. R., PhD Dissertation, Lund University (1981).Google Scholar
13. Maylotte, D. H., Wong, J., Peters, R. L. St., Lytle, F. W. and Greegor, R. B., Science, 214, 554556 (1981).CrossRefGoogle Scholar
14. Wong, J., Lytle, F. W., Messmer, R. P. and Maylotte, D. H., Phys, Rev. B. 30, 55965610 (1984).Google Scholar
15. Feldman, C., Anal. Chem. 55, 24512453 (1983).Google Scholar
16. Mangelson, N. F., Hill, M. W., Nielson, K. K., and Ryder, J. F., Nucl. Instr.Meth. 142, 133142 (1977).Google Scholar
17. Mangelson, N.F., HIll, M.W., Nielson, K.K., Eatough, D.J., Christensen, J.J., Izatt, R.M., and Richards, D.O., Anal. Chem. 51, 11871194 (1979).CrossRefGoogle Scholar
18. Lytle, F.W., Greegor, R.B., Sandstrom, D.R., Marques, E.C., Wong, J., Spiro, C.L., Huffman, G.P., and Huggins, F.E., Nucl. Instr. Meth. 226, 542548 (1984).Google Scholar
19. Jaklevic, J., Kirby, J.A., Klein, M.P., Robertson, A.S., Brown, G.S., and Eisenberger, P., Solid State Commun. 23 679682 (1977).Google Scholar
20. Stern, E.A. and Heald, S., Rev. Sci. Instrum. 50, 15791582 (1979).CrossRefGoogle Scholar
21. Lytle, F.W., Via, G.H., and Sinfelt, J.H., “X-ray Absorption Spectroscopy: Catalyst Applications” in Synchrotron Radiation Research, edited by Winick, H. and Doniach, S. (Plenum Press, New York, NY, 1980) pp. 401424.Google Scholar
22. Via, G.H., Sinfelt, J.H., and Lytle, F.W., J. Chem. Phys. 71, 690699 (1979).Google Scholar
23. Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P., J. Non-Crystalline Solids, 55, 2743 (1983).Google Scholar
24. Marques, E.C., Sandstrom, D.R., Lytle, F.W., and Greegor, R.B., J. Chem. Phys. 77, 10271034 (1982).CrossRefGoogle Scholar
25. Henry, W.M. and Knapp, K.T., Environ. Sci. Technol. 14, 450456 (1980).Google Scholar