Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T05:03:41.285Z Has data issue: false hasContentIssue false

Identification of As, Ge and Se Photoluminescence in GaN Using Radioactive Isotopes

Published online by Cambridge University Press:  03 September 2012

A. Stötzler
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
R. Weissenborn
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
M. Deicher
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
Isolde Collaboration
Affiliation:
CERN / PPE, CH-1211 Geneva 23, Switzerland
Get access

Abstract

We report on experiments which unequivocal identify the chemical nature of optical transitions related to As (2.58 eV), Ge (3.398 eV) and Se (1.49 eV) found in the photoluminescence (PL) spectra of GaN. For this purpose epitaxial GaN layers were doped by ion implantation (60 keV, 3×1012 cm−2) with the radioactive isotopes 71As and 72Se. The isotope 71As (half-life 64.28 h) decays first into 71Ge (11.43 d), which finally transmutes into stable 71Ga. The isotope 72Se decays via 72As (26 h) into stable 72Ge. These chemical transmutations were monitored with photoluminescence spectroscopy (PL). The half-lives resulting from exponential fits on our PL data are in excellent agreement with the half-lives of the isotopes. Our experiments clearly show that in each case the luminescence center involves exactly one As, Ge or Se atom. In addition to this, the results imply that no optically active GaN antisite exists.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pearton, S.J., Zolper, J.C., Shul, R.J., and Ren, F., J. Appl. Phys. 86, 1 (1999)Google Scholar
[2] Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998)Google Scholar
[3] Park, C.H. and Chadi, D.J., Phys. Rev. B 55, 12995 (1997)Google Scholar
[4] Boguslawski, P. and Bernholc, J., Phys. Rev. B 56, 9496 (1997)Google Scholar
[5] Metcalfe, R.D., Wickenden, D., and Clark, W.C., J. Lumin. 16, 405 (1978)Google Scholar
[6] Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976)Google Scholar
[7] Li, X., Kim, S., Reuter, E.E., Bishop, S.G., and Coleman, J.J., Appl. Phys. Lett. 72, 1990 (1998)Google Scholar
[8] Yi, G. and Wessels, B.W., Appl. Phys. Lett. 69, 3028 (1996)Google Scholar
[9] Chen, H.M., Chen, Y.F., Lee, M.C., and Feng, M.S., Phys. Rev. B 56, 6942 (1997)Google Scholar
[10] Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 31, 2883 (1992)Google Scholar
[11] Magerle, R., Burchard, A., Deicher, M., Kerle, T., Pfeiffer, W., and Recknagel, E., Phys. Rev. Lett. 75, 1594 (1995)Google Scholar
[12] tzler, A. Stö, Weissenborn, R., Deicher, M., and the ISOLDE Collaboration, Physica B 273–274, 144 (1999)Google Scholar
[13] Jenkins, D.W. and Dow, J.D., Phys. Rev. B 39, 3317 (1989)Google Scholar
[14] Tansley, T.L. and Egan, R. J., Phys. Rev. B 45, 10942 (1992)Google Scholar
[15] Boguslawski, P., Briggs, E.L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995)Google Scholar
[16] Neugebauer, J. and Walle, C.G. Van der, Phys. Rev. B 50, 8067 (1994)Google Scholar
[17] Magerle, R., in: Defects in Electronic Materials II, ed. Michel, J., Kennedy, T., Wada, K., and Thonke, K., Met. Res. Soc. Sympos. Proc. Vol. 442, (Mater. Res. Soc., Pittsburgh, 1997), p.3.Google Scholar
[18] Viswanath, A.K., Lee, J.I., Yu, S., Kim, D., Choi, Y., and Hong, C., J. Appl. Phys. 84, 3848 (1998)Google Scholar