Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:55:20.629Z Has data issue: false hasContentIssue false

Ideal Cleavage Fracture of Transition-Metal Silicides: A Comparison Analysis

Published online by Cambridge University Press:  10 February 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115, USA, [email protected]
K. Yoshimi
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115, USA, [email protected]
Get access

Abstract

A simple empirical model for the ideal cleavage energy, resulting from a rigid-body separation, is proposed in terms of four variables, viz., the elastic stiffness constant, the interplanar spacing, and two adjustable length parameters. The ratio of these parameters is assessed based on the available results of ab-initio slab-supercell calculations. Ideal cleavage energies and stress intensity factors of transition-metal silicides are estimated, and the available fracture toughness data are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. High-Temperature Silicides and Refractory Alloys, eds. B. P. Bewlay, J. J. Petrovic, C. L. Briant, A. K. Vasudevan, and H. A. Lipsitt (MRS Proc. 322, Pittsburgh, PA, 1994).Google Scholar
2. High Temperature Structural Silicides, Petrovic, J. J., Vasudevan, A. K., Fishman, S. G., Sorrell, C. A., and Nathal, M. V., Eng. Found. Conf., May 25–29, 1998, Hyannis, MA.Google Scholar
3. Fu, C. L. and Yoo, M. H., Ordered Intermetallics-Physical Metallurgy and Mechanical Bahaviour, eds. C. T. Liu, R. W. Cahn, and G. Sauthoff (NATO ASI 213, Applied Sciences, 1992), pp. 155164.Google Scholar
4. Yoo, M. H., Fu, C. L., and Horton, J. A., Mater. Sci. Eng. A 176, 431 (1994).Google Scholar
5. Yoo, M. H. and Fu, C. L., Mater. Sci. Eng. A 153, 470 (1992).Google Scholar
6. Yoo, M. H., Zou, J., and Fu, C. L., Mater. Sci. Eng. A 192/193, 14 (1995).Google Scholar
7. Stadler, R., Podloucky, R., Kresse, G., and Hafner, J., Phys. Rev. B 57, 4088 (1998).Google Scholar
8. Fu, C. L., J. Mater. Res. 5, 971 (1990).Google Scholar
9. Yoo, M. H. and Fu, C. L., Scr. Metall. Mater. 25, 2345 (1991).Google Scholar
10. Hong, T., Smith, J. R., Srolovitz, D. J., Gay, J. G., and Richter, R., Phys. Rev. B 45, 8775 (1992).Google Scholar
11. Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988).Google Scholar
12. Vinet, P., Rose, J. H., Ferrante, J., and Smith, J. R., J. Phys. 1, 1941 (1989).Google Scholar
13. Raynolds, J. E., Smith, J. R., Srolovitz, D. J., and Zhao, G.-L., Fracture-Instability Dynamics, Scaling, and Ductile/Brittle Behavior, eds. R. L. B. Selinger, J. J. Mecholsky, A. E. Carlsson, and E. R. Fuller, Jr. (MRS Proc. 409, Pittsburgh, PA, 1996), pp. 177182.Google Scholar
14. Fu, C. L., Ye, Y.-Y., and Yoo, M. H., Phil. Mag. Lett., 67, 179 (1993).Google Scholar
15. Nakamura, M., Intermetallic Compounds, Vol.1, Principles, eds. Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, New York, 1994), pp. 873893.Google Scholar
16. Ito, K., Nakamoto, T., Inui, H., and Yamaguchi, M., High-Temperature Ordered Intermetallic Alloys VII,eds. C. C. Koch, C. T. Liu, N. S. Stoloff, and A. Wanner (MRS Proc. 460, Pittsburgh, PA, 1997) pp. 599604.Google Scholar
17. Wade, R. K. and Petrovic, J. J., J. Am. Ceram. Soc. 75, 1682 (1992).Google Scholar
18. Peralta, P., Maloy, S. A., Chu, F., Petrovic, J. J., and Mitchell, T. E., Scr. Mater. 37, 1599 (1997).CrossRefGoogle Scholar
19. Gilman, J. J., Fracture, (The MIT Press, Cambridge, MA, 1959).Google Scholar
20. Kelly, A., Strong Solids, (Clarendon Press, Oxford, 1966).Google Scholar