Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T00:25:48.177Z Has data issue: false hasContentIssue false

Hysteresis Loops and Coercivity Mechanisms in Sintered and Nanocrystalline Permanent Magnets

Published online by Cambridge University Press:  21 February 2011

H. Kronmüller
Affiliation:
Max-Planck-Institut fuir Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
D. Goll
Affiliation:
Max-Planck-Institut fuir Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
I. Kleinschroth
Affiliation:
Max-Planck-Institut fuir Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
A. Zern
Affiliation:
Max-Planck-Institut fuir Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
Get access

Abstract

The hysteresis loops of nanocrystalline (nc) permanent magnets (pms) produced by the melt-spin technique have been investigated for compositions based on the intermetallic compounds R2Fe14B (R = Nd, Pr) and the carbides Sm2Fe17−xGaxCy. The following three types of pms have been studied: 1) High-coercivity pins with exchange decoupled grains. 2) High-remanence exchange-spring pms. 3) High-coercive-high-remanence composite pins with exchange coupled soft and hard magnetic grains. The temperature dependence of the coercive field μ0Hc for all three types ofpms obeys a relation for a modified nucleation field, Hc = (2K1/Js)α - Neff Ms (K1 = first anisotropy constant, Ms = spontaneous magnetization). For an analysis of the characteristic differences between the microstructural parameters a and Neff as obtained for the three types of pms, computational micromagnetism on the basis of the Finite Element Technique is applied. This powerful method allows a quantitative analysis of the role of grain size, grain boundaries (gbs), texture of easy directions and of soft magnetic phases in composite materials. In order to obtain satisfactory results, a self-adapting algorithm has been developed where the mesh size is adapted to the gradients of the direction cosines of the spontaneous magnetization. It turns out that excellent magnetic properties of composite pms can only be obtained if the gbs are as ideal as possible. Remanence and coercive field are found to decrease linearly with a corresponding reduction of both, the crystal anisotropy and the exchange constant within the gbs. In composite pins the diameters of the soft magnetic grains should be smaller than twice the domain wall width, of the hard magnetic phase in order to obtain a remarkable remanence enhancement. From these model calculations general rules for the development of optimized nc pms with large remanences and large coercivities are derived.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, W.F. Jr., Rev. Mod. Phys. 17, p. 15 (1945).Google Scholar
2. Stoner, E.C. and Wohlfarth, E.P., Philos. Trans. Roy. Soc. 240, p. 599 (1948).Google Scholar
3. Kronmufller, H., Durst, K.-D. and Sagawa, M., J. Magn. Magn. Mater. 74, p. 291 (1988).Google Scholar
4. Kronmuiler, H. in Supermagnets, Hard Magnetic Materials, edited by Long, G.J. and Grand-jean, F. (Kluwer, Dordrecht 1991), p. 461.Google Scholar
5. Sagawa, M. and Hirosawa, S., J. Physique 49, p. C8617 (1988).Google Scholar
6. Tokunaga, M., Nozawa, Y., Iwasaki, K., Tamigawa, S. and Harada, H., IEEE Trans. Magn. 25, p. 3561 (1989).Google Scholar
7. Fidler, J., 7th Int. Symp. on Magnetic Anisotropy and Coercivity in RE-TMAlloys, edited by Street, B. (The University of Western Australia, Perth 1992), p. 11.Google Scholar
8. Kronmiller, H., Fischer, R., Seeger, M. and Zern, A., J. Phys. D: Appl. Phys. 29, p. 2274 (1996).Google Scholar
9. Kneller, E.F. and Hawig, R., IEEE Trans. Magn. 27, p. 3588 (1991).Google Scholar
10. Schrefl, T., Fidler, J. and Kronmuller, H., Phys. Rev. B 49, p. 6100 (1994).Google Scholar
11. Ding, J., McCormick, P.G. and Street, R., J. Magn. Magn. Mater. 124, p. Li (1993).Google Scholar
12. Ding, J., Liu, Y., Street, R. and McCormick, P.G., J. Appl. Phys. 75, p. 1032 (1994).Google Scholar
13. Henig, E.-Th. and Grieb, B. in Supermagnets, Hard Magnetic Materials, edited by Long, G.J. and Grandjean, F. (Kluwer, Dordrecht 1991), p. 171.Google Scholar
14. Coehoorn, R., Mooij, D.B. de, Duchateau, J.P.W.B. and Buschow, K.H.J., J. Physique 49, p. C8669 (1988).Google Scholar
15. Bauer, J., Seeger, M., Zern, A. and Kronmèiller, H., J. Appl. Phys. 80, p. 1667 (1996).Google Scholar
16. Goll, D., Seeger, M. and Kronmtiller, H., J. Magn. Magn. Mater. 185, p. 49 (1998).Google Scholar
17. Harland, C.I., Davies, H.A., Watts, B.E. and Leccabue, F. in Rare Earth Magnets and Their Applications, edited by Schultz, L. and Müller, K.-H. (Werkstoff-Informationsgesellschaft, Frankfurt 1998), p. 263.Google Scholar
18. Kronmtiller, H., phys. stat. sol. (b) 144, p. 385 (1987).Google Scholar
19. Givord, D., Tenaud, P. and Viadieu, T., IEEE Trans. Magn. MAG- 24, p. 1921 (1988).Google Scholar
20. Martinek, G. and Kronmuller, H., J. Magn. Magn. Mater. 86, p. 177 (1990).Google Scholar
21. Lier, J. van, Seeger, M. and Kronmuiller, H., J. Magn. Magn. Mater. 167, p. 43 (1997).Google Scholar
22. Kleinschroth, J., Doctor Thesis, University Stuttgart 1997.Google Scholar
23. Fischer, R., Schrefl, T., Kronmèiller, H. and Fidler, J., J. Magn. Magn. Mater. 153, p. 35 (1996).Google Scholar
24. Schrefl, T., H. Kronmuller and Fidler, J., J. Magn. Magn. Mater. 127, p. L273 (1993).Google Scholar
25. Schrefl, T., Fidler, J. and Kronmuiller, H., J. Magn. Magn. Mater. 138, p. 15 (1994).Google Scholar
26. Willcox, M., Williams, J., Leonowicz, M. and Manaf, A. in 8th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, edited by Manwaring, C., Jones, D., Williams, A. and Harris, I. (University of Birmingham, UK 1994), p. 443.Google Scholar
27. Fischer, R. and Kronméiller, H., Phys. Rev. B 54, p. 7284 (1996).Google Scholar
28. Fischer, R. and Kronmuller, H., J. Magn. Magn. Mater. 184, p. 166 (1998).Google Scholar