Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T21:54:59.442Z Has data issue: false hasContentIssue false

Hydrolysis-Condensation Behavior of Acetylacetone Modified Tin(IV) Tetra Tert-Amyloxide

Published online by Cambridge University Press:  10 February 2011

L. Armelao
Affiliation:
Centro CNR-SSRCC, Department of Inorganic Chemistry - University of Padova, 4 Via Loredan, 35100 Padova, Italy
F. O. Ribot
Affiliation:
Laboratoire de Chimie de la Matière Condensée - Université P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
C. Sanchez
Affiliation:
Laboratoire de Chimie de la Matière Condensée - Université P. et M. Curie / CNRS, 4 Place Jussieu, 75252 Paris, France
Get access

Abstract

The hydrolysis of Sn(OAmt)2(acac)2 (TTA) leads to sols, gels or precipitates made of tin oxohydroxo polymers, surface capped with residual organic groups, which are mainly acac ligands. The residual acac/Sn ratio decreases when the hydrolysis ratio H increases. For a given H, the observed gelation-precipitation behavior and the BET surface areas of the resulting xerogels strongly depend on the nature of the solvent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Especially Shapes, edited by Klein, L.C., Noyes, , Park Ridge, N.J., 1988.Google Scholar
2. Brinker, C.J. and Scherrer, G.W., Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing, Academic Press, San-Diego, CA, 1990.Google Scholar
3. Novak, B.M., Adv. Mater. 5, 422 (1993).Google Scholar
4. Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
5. Schubert, U., Hüising, N. and Lorenz, A., Chem. Mater. 7, 2010 (1995).Google Scholar
6. Loy, D.A. and Shea, K.J., Chem. Rev. 95, 1431 (1995).Google Scholar
7. Ribot, F., Banse, F., Diter, F. and Sanchez, C., New J. Chem. 19, 1145 (1995).Google Scholar
8. Ribot, F., Banse, F., Sanchez, C., Lahcini, M. and Jousseaume, B., J. S. S. T. in press (1996).Google Scholar
9. In, M., Gérardin, C., Lambard, J. and Sanchez, C., J. S. S. T. 5, 101 (1995).Google Scholar
10. Hampden-Smith, M.J., Wark, T.A. and Brinker, C.J., Coord. Chem. Rev. 112, 81 (1992).Google Scholar
11. Roger, C., Hampden-Smith, M.J. and Brinker, C.J. in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G. and Brinker, C.J. (Mater. Res. Soc. Proc. 271, Pittsburgh, PA, 1992), p. 51.Google Scholar
12. Thomas, I., US Patent 3,946,056 (1976).Google Scholar
13. Armelao, L., Ribot, F. and Sanchez, C., forth comming paper.Google Scholar
14. Sanchez, C., Ribot, F. and Doeuff, S. in Inorganic and Organometallic Polymers with Special Properties, edited by Laine, R.M., NATO ASI Series, vol 206 (Kluwer, New-York, NY, 1992), p. 267.Google Scholar
15. Cossement, C., Darville, J., Gilles, J-M., Nagy, J.B., Fernandez, C. and Amoureux, J-P., Magn. Reson. Chem. 30, 263 (1992).Google Scholar
16. Harris, R.K. and Sebald, A., Magn. Reson. Chem. 25, 1058 (1987).Google Scholar