Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:53:09.594Z Has data issue: false hasContentIssue false

Hydrogen-Related Electron Traps in GaAs and their Relation to Crystal Stoichiometry

Published online by Cambridge University Press:  26 February 2011

Tatsuyuki Shinagawa
Affiliation:
Department of Electronics and Information Engineering, Tokyo Metropolitan University 1–1, Minami-ohsawa, Hachiohji, Tokyo 192–03, Japan
Tsugunori Okumura
Affiliation:
Department of Electronics and Information Engineering, Tokyo Metropolitan University 1–1, Minami-ohsawa, Hachiohji, Tokyo 192–03, Japan
Get access

Abstract

Deep-level formation upon plasma hydrogenation has been studied with n-GaAs grown by various methods. Four electron traps (EH0-EH3) were generated in As-rich n-GaAs crystals. No electron traps were observed in the LPE layer before and after hydrogenation. The hydrogen as well as excess arsenic defects are responsible for the formation of these deep levels. Two of the generated levels in our study, EH0/EH2, exhibit metastability and are identical to the M3/M4 levels reported by Buchwald et al. It can be speculated that both diffused hydrogen and already existing As antisite defects are responsible for the generation of the metastable defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Pearton, S.J., Corbett, J.W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer, New York, 1992).Google Scholar
2) Chung, Y., Chen, C.Y., Laner, D.W. and Park, Y.S., J. Vac. Sci. & Technol. B1, 799 (1983).Google Scholar
3) Johnson, N.M., Burnham, R.D., Street, R.A. and Thornton, R.C., Phys. Rev. B33, 1102 (1986)Google Scholar
4) Chevallier, J., Clerjaud, B. and Pajot, B., Hydrogen in Semiconductor, Semiconductors and Semimetals Vo. 34, edited by Pankove, J.I. and Jhonson, N.M. (Academic, San Diego, 1991) p. 447.Google Scholar
5) Cho, H.Y., Kim, E.K., Min, S-K., Kim, J.B. and Jang, J., Appl.Phys. Lett. 53, 856 (1988).Google Scholar
6) Jalil, A., Heurtel, A., Marfaing, Y. and Chevallier, J., J. Appl. Phys. 66, 5854 (1989).Google Scholar
7) Cho, H.Y., Kim, E.K., Min, S-K., Chang, K.J. and Lee, C., Appl. Phys. Lett. 58, 1866 (1991).Google Scholar
8) Cho, H.Y., Kim, E.K., Min, S-K. and Lee, C., Phys. Rev. B43, 14498 (1991).Google Scholar
9) Leitch, A.W.R., Prescha, Th. and Weber, J., Phys. Rev. B45, 14400 (1992).Google Scholar
10) Buchwald, W.R., Johnson, N.M. and Trombetta, L.P., Appl. Phys. Lett. 50, 1007 (1987).Google Scholar
11) Buchwald, W.R., Gerardi, G.J., Pointdexter, E.H., Johnson, N.M., Grimmeiss, H.G. and Keeble, D.J., Phys. Rev. B40, 2940 (1989).Google Scholar
12) Nauka, K.W., Imperfections in III/V Materials, Semiconductors and Semimetals Vol. 38, edited by Weber, E. R. (Academic, San Diego, 1993) pp. 351357.Google Scholar
13) Lagowski, J., Gatos, H.C., Parsey, J.M., Wada, K., Kaminska, M. and Warkiewicz, W., Appl. Phys. Lett. 40, 342 (1982).Google Scholar
14) Martin, G.M., Mitonneau, A. and Mircea, A., Electron. Lett. 13, 191 (1977).Google Scholar
15) Tabata, A.S., Pudensi, M.A.A. and Machado, A.M., J. Appl. Phys. 65, 4076 (1989).Google Scholar
16) Bhattacharya, P.K., Ku, J.W., Owen, S.J.T., Aebi, V., Cooper, C. B. III, and Moon, R.L., Appl. Phys. Lett. 36, 304 (1980).Google Scholar
17) Pfeiffer, G. and Weber, J., Materials Science Forum, 143–147, 873 (1994).Google Scholar
18) Kaufmann, U., Klausmann, E., Schneider, J. and Ch., H. Alt, Phys. Rev. B43, 12106 (1991).Google Scholar
19) Auret, F. D., Goodman, S.A., Myburg, G. and Meyer, W.E., J. Vac. Sci. & Technol. B10, 2366 (1992) .Google Scholar
20) Shinagawa, T. and Okumura, T., (unpublished).Google Scholar